Надежность автомобиля

Технология восстановления коленвала

Технология восстановления коленвала

 Коленчатый вал двигателя

Коленчатый вал двигателя

Устройство коленчатого вала двигателя

В  технологическом процессе предусматривается закалка шеек коленчатых валов ТВЧ в кольцевых индукторах. Сложность геометрии вала, наличие кривошипов и щек предопре­деляли необходимость изготовления индукторов из двух половин, которые после их установки на шейку вала замыкались. При такой конструкции индуктора очень трудно обеспечить необходимую равномерную ширину и глубину закаленного слоя из-за невоз­можности обеспечить хороший электрический контакт по всей площади разъема индуктора и магнитной асимметрии, вызванной различными массами щек по окружности шеек, которые соответ­ственно создают различные магнитные сопротивления магнитному молю индуктора. Разъем индуктора и асимметрия магнитного поля вызывают неравномерную ширину и глубину закаленного слоя. И результате ширина закаленного слоя шеек нередко колеблется до 10—15 мм. Неравномерность нагрева в сочетании с неравно­мерностью охлаждения, обусловленной падением душевых струй В одни и те же точки на поверхности шеек, вызывает образование закалочных микротрещин, особенно при засорах нескольких ря­дом расположенных спрейерных отверстий на индукторе. Эти же причины усугубляют и образование закалочных микротрещин на кромках масляных каналов, которые значительно снижают усталостную прочность вала. Разработка и внедрение установок для закалки способом растушевки с вращением вала в значитель­ной степени устранило неравномерность нагрева и охлаждения, ликвидировало условия для образования микротрещин, умень­шило неравномерность ширины закаленной зоны. Недоста­ток разъемных кольцевых индукторов — трудность регулирова­ния интенсивности нагрева по длине шейки, невозможность регу­лирования температуры на отдельных ее элементах. Лучшее ре­шение дало применение петлевых секторных индукторов, охваты­вающих часть окружности шейки вала. Такая конструкция индуктора, снабженного спрейерами, позволяет в широких пре­делах регулировать интенсивность нагрева на отдельных элемен­тах шеек. Достигается это изменением соотношения его ширины и длины, сечения меди отдельных сторон петли, а также приме­нением пакетов магнитопроводов.

Ограничитель максимальной частоты

вращения коленчатого вала 

ограничитель максимальной частоты вращения

Ограничитель максимального вращения

       коленчатого вала служит для...

Эти свойства петлевых секторных индукторов позволили устра­нить перегрев кромок масляных каналов и неравномерность их температуры, отказаться от их экранировки медными пробками, а также уменьшить неравномерность ширины слоя до 1 мм. Зазор между шейкой и индуктором поддерживается с помощью роликов или твердосплавных опор. Закалка шеек способом растушевки с применением односторонне расположенных петлевых индукто­ров, охватывающих часть поверхности при вращающейся детали, обеспечило равномерный нагрев по всей шейке, повысило качество коленчатых валов. Улучшение качественных показателей, опре­деленных на опытных партиях коленчатых валов из сталей 50Г-СШ и 50ХФА, закаленных на установках с петлевыми индук­торами, характеризуется практически полной ликвидацией микро­трещин на кромках масляных каналов при аннулировании их экранировки, уменьшением дефектов на шейках в зоне разъема штампа в 4 раза, уменьшением шлифовочных микротрещин на шейках в 7 раз. Снижение различного рода микротрещин объяс­няется прежде всего уменьшением остаточных внутренних зака­лочных напряжений.

Способ растушевки позволяет калить шейки вала с выходом закаленного слоя на галтель. Таким способом закаливалась пар­тия коленчатых валов из стали 50Г-СШ в нормализованном со­стоянии. Испытания показали, что предел их выносливости уве­личивается до 60%. Однако при шлифовании шеек с закаленными галтелями, в связи с тяжелыми условиями работы абразивного круга наблюдаются прижоги и трещины, повышение шерохова­тости поверхности галтелей и торцов. Поэтому необходимы дальней­шие исследования и отработка технологии шлифования, в частности применение кругов прерывистого шлифования и т. д.

Выбор правильного способа охлаждения в процессе закалки определяет прокаливаемость и, следовательно, степень использования прочностных свойств металла, применяемого для данной детали. В связи с этим при  переходе в изготовлении деталей  углеродистых сталей к легированным необходимо   тщательно   исследовать,  обеспечивается ­ли надлежащая  прокаливаемость и нет ли резервов, которые можно реализовать улучшением процесса охлаждения при закалке.  Улучшение процесса охлаждения определятся выбором не только рационального для  данной детали способа, но и самой охлаждающей среды.  Традиционные  зака­лочные среды — вода и индустриальное ма­сло во многих случаях не обеспечивают оптимальных скоростей охлаждения с целью получения оптимальных  прочностных свойств деталей,  определяемых прокаливаемостью, твердостью и величиной остаточных напряжений. Разница в охлаждающих свойствах масла и воды слишком велика, ее невозможно ликвидировать выбором способа охлаждения и регулированием интенсивности циркуля­ции закалочной среды. Правда, за последние годы этот недостаток устраняется применением водных растворов неорганических и химических веществ. Для поверхностной закалки с душевым охлаждением коленчатых валов и других деталей из легированных к и успешно используется созданная на ЯМЗ полимерная закалочная среда ЗСП-1. Физическая сущность регулирования скорости охлаждения в таких закалочных средах заключается в образовании вокруг нагретой детали слоя полимера, обладающего по сравнению с водой лучшими физико-химическими свойствами, обеспечивающими более мягкое, равномерное охлаждение и закалку без мягких пятен. Образуемая на поверхности закаливаемой детали пленка полимера по мере охлаждения частично вновь растворяется. Скорость охлаждения регулируется изменениями концентрации раствора. Особое значение полимерные закалочные среды имеют для расширения области применения поверхностей закалки ТВЧ деталей из легированных марок сталей, для которых нельзя применять воду вследствие трещинообразования.

Восстановление коленчатого вала.

Замена индустриального масла жидкостью ЗСП-1 при закалке коленчатых валов двенадцатицилиндровых двигателей из стали 60ХФА обеспечила повышение износостойкости за счет увеличения твердости после закалки с НRС 60—61 до НRС 63—64, а применение вращения вала при закалке шеек снизило величины коробления . Одновременно достигнуто снижение растягивающих остаточных напряжений при закалке, что проявилось в повышении изгибной усталостной прочности на 9% и крутиль­ной усталости на 40%.

Закалка ТВЧ повышает твердость, а следовательно, и износо­стойкость шеек коленчатого вала. Однако при обычно применяе­мой технологии закаленная зона на шейках расположена на рас­стоянии 8-10 мм от щеек, а галтели, являясь концентраторами напряжений, остаются незакаленными. Поэтому усталостные раз­рушения в зоне галтелей — одна из причин поломок коленчатых валов.

С целью повышения усталостной прочности коленчатые валы шести- и восьмицилиндровых двигателей на ЯМЗ упрочняют методом пластического деформирования путем обкатки галтелей роликами. Упрочнение осуществляется на специальных полуав­томатических станках фирмы «Хегеншайдт», где одновременно обкатываются все галтели коренных и шатунных шеек за один цикл работы станка

По рекомендации фирмы упрочнение должно быть завершающей операцией технологического процесса и производиться на полностью обработанной детали. Такая тех­нология и была заложена при создании специального станка. Однако уже при первом испытании станка выявилось, что боль­шинство валов после операции обкатки получало деформации, выходящие за пределы допуска чертежа (после обкатки биение коренных шеек достигло на некоторых валах 0,2 мм при допуске 0,03 мм). Исследования, проведенные с целью установления влияния усилия и времени обкатки на величину и направление деформации, не выявили какой-либо закономерности. Это дало Основания считать, что избежать деформации детали не представляется возможным, так как полученные поводки являются след­ствием  уплотнения  наружных  поверхностных  слоев металла в зоне галтели. Устранение биения вала за счет введения правки исключалось, так как при этом возможно некоторое снижение усталостной прочности коленчатых валов. Известны методы, когда упрочнение галтелей производится перед окончательным шлифо­ванием шеек, для чего галтели поднутряются в тело вала, и окон­чательное шлифование шеек выполняется после упрочнения гал­телей. Однако такая технология требовала перестройки процесса и введения дополнительных специальных высокоточных станков для протачивания поднутренных галтелей. С целью использова­ния имеющегося оборудования поточной линии разработан тех­нологический процесс, предусматривающий поднутрение галтелей только на коренных шейках, одновременную обкатку всех корен­ных и шатунных шеек с последующим окончательным шлифова­нием только  коренных  шеек.

Восстановление коленчатого вала.

Принципиальное отличие данной технологии заключается в том, что профилирование поднутренных галтелей производится не токарной обработкой, а шлифованием одновременно с предвари­тельным шлифованием коренных шеек. Технологический маршрут обработки шеек вала, включающий подготовительные (перед обкаткой) и завершающие операции по изготовлению вала, имеет следующие операции:

1 — предварительное шлифование торцов коренных шеек;

2 — получистовое шлифование коренных шеек С одновременным профилированием поднутренных галтелей;

3 — чистовое шлифование шатун­ных шеек и галтелей;

4 — шлифо­вание хвостовика переднего конца вала под фальшгалтель и стяжной хомут;

5 — обкатывание;

6 — окон­чательное шлифование коренных шеек;

7 — суперфиниширование и полирование коренных и шатун­ных шеек.

Добавить комментарий