Проектирование и расчет автомобиля

Центр тяжести автомобиля

ЦЕНТР ТЯЖЕСТИ АВТОМОБИЛЯ

При расчете автомобиля необходимо учитывать важные этапы компоновки и конструирования автомобиля. Сегодня мы с вами будем определять центр тяжести автомобиля и распределения его массы по осям.

Определение центра тяжести автомобиля и распределение массы автомобиля по осям

Для расчета весовых характеристик автомобиля в расчет обычно принимается масса взрослого человека (около 70кг), а для детей 35 кг. Центр массы взрослого человека принимается на обоснованном расстоянии от нижней крайней точки спинки сиденья и составляет 200 мм. Чтобы определить массу, приходящуюся на одну ось необходимо использовать уравнение моментов.

Сейчас мы рассмотрим расчет распределения нагрузки задней оси:

центр тяжести автомобиля

Расчетная схема определения нагрузки, центр тяжести автомобиля который приходится на заднюю ось автомобиля:

Gt — это сила тяжести рулевой колонки автомобиля; G1 — сила тяжести рулевого управления автомобиля; G2— сила тяжести кардана автомобиля; G3— сила тяжести силового агрегата автомобиля; G4 — сила тяжести передних сидений автомобиля; G5 — сила тяжести аккумулятора автомобиля; G6 — сила тяжести кузова; G7— сила тяжести задних сидений; G8 — сила тяжести задней подвески автомобиля и моста; С9 — сила тяжести задних колес; G 10 — сила тяжести глушителя выпускной системы автомобиля; G11- сила тяжести запасного колеса; l1,l2...l12  — расстояние от выбранного агрегата до передней оси автомобиля.

Проектирование автомобиля осуществляется с использованием следующих параметров: масса отдельных частей автомобиля, сухая масса автомобиля, реальные массы агрегатов. Сила тяжести определяется в Ньютонах для этого необходимо получить произведение массы автомобиля, умноженной на коэффициент 9,8. Еще необходимо найти в справочнике массу всех агрегатов и узнать расстояние агрегатов и механизмов до осей автомобиля. Для определения силы тяжести, которая приходится на задний мост необходимо сложить произведения сил тяжести умноженных на расстояния между осями до центра масс агрегата или механизма и разделить на расстояние между принятыми осями автомобиля. Во время расчета принимаем знаки соответствующие математическим выражениям.

Во время рассмотрения оси, справа от нее существует момент силы, произведение сил тяжести на расстояние, тогда принимается знак «+», а моменты сил слева от оси принимаются со знаком «-».

Среднестатистические значения центров масс отдельных узлов и агрегатов автомобилей, выраженные в кг.

Для определения силы тяжести, которая приходиться на другую ось можно воспользоваться таким же методом.

Во время проектирования автомобиля не достаточно построить изображение и дизайн на бумаге. Если проектируется пространство и посадочное место для водителя, необходимо изготовить специальный макет, который создается в натуральную величину , то же самое применяем и к внешнему облику автомобиля, необходимо построить макет, который будет полностью соответствовать параметрам кузова автомобиля. С этого момента можно поговорить и о дизайне кузова автомобиля и его компоновке.

формула центр тяжести

Каждый конструктор ставит перед собой задачу создать, что-то такое чего раньше еще не было, так и в автомобильной отрасли автомобиль должен быть единственным в своем роде, оригинальным.

Требования к проектируемым автомобилям должны соответствовать определенной направленности и динамичности. Важно создать свой оригинальный характер и построение формы автомобиля со спортивной нотой, вид капли, что очень популярно и использовалось кампанией Porshe, форма должна быть изящной и аэродинамической, что уменьшает сопротивления воздуха. Форма капли сама по себе говорит об улучшении аэродинамики и уменьшении воздушного сопротивления, динамичность у нее в крови.

Когда автомобиль движется в пространстве, его внешние детали испытывают сопротивления воздуха. Сопротивление воздуха оказывает огромное влияние на расход мощности автомобиля. Конструкторы ставят задачу уменьшить повышенное сопротивление воздуха. И скорость движения равно пропорциональна потери мощности на воздушное сопротивление.

Для того чтобы разобраться в вопросах потери мощности, необходимо разобраться в вопросах аэродинамики.

Аэродинамическое сопротивление при перемещении автомобиля в пространстве состоит из нескольких составляющих:

1)      Аэродинамическое сопротивление формы автомобиля в движении;

2)      Индуктивное сопротивление;

3)      Сопротивление внутренних потоков.

Аэродинамическое сопротивление. В большей части сопротивление воздуха зависит от формы и поверхности автомобиля. Поверхность кузова автомобиля влияет на обтекание воздухом и плавность хода. Идеальной в этом смысле является капельная форма кузова. Для создания идеального автомобиля следует избегать остро выраженных углов, и создавать легкие гладкие поверхности кузова автомобиля.


Индуктивное сопротивление зависит от подъемной силы автомобиля, которая возникает при понижении давления в верхней части автомобиля и повышения давления в нижней части в районе днища. Такой принцип сопротивления очень подобает движению самолетного крыла. Такой вид сопротивления воздуху можно отметить на высоких скоростях движения автомобиля. Чтобы уменьшить индуктивное сопротивление используют вспомогательные устройства, такие как спойлеры, антикрылья, подвесы.


Поверхностное сопротивление возникает вследствие трения мелких частиц воздуха, которые следуют по касательной, направляясь к поверхности кузова автомобиля. Поэтому покрытия кузова имеет тоже очень важную роль.


Интерференционное сопротивление это сопротивление, создаваемое различными частями деталей автомобиля, которые выступает за его пределы. Эти элементы могут создавать собственные сопротивления. Способы уменьшения интерференционного сопротивления могут крыться в установке специальных ручек, обода фар, форменных наружных зеркал, ветровых стекол.

Зоны сопротивления воздуха

Зоны сопротивления, создаваемые потоком воздуха.

Чтобы уменьшить сопротивление воздуха каналы входа потока воздуха должны быть размещены внутри кузова, где создается наибольшее давление (передняя часть кузова, зона, находящаяся в районе переднего бампера, и у бокового стекла). Каналы, которые будут выпускать воздух из кузова выполнять пропорционально и в зоне разряжения (задняя часть кузова, передние крылья, район кузова вблизи заднего стекла).

Компоновка необходима для решения стратегического направления при создании конструкции кузова. В процессе создания компоновки отдельные элементы приходится изменять, править, экспериментировать, рассчитывать.

Компоновка автомобиля выполняется в трех видах. Компоновочные чертежи включают: вид сбоку, спереди и сверху. Для точности выполнения компоновки автомобиля строится специальная сетка с установленными расстояниями между линиями в 200 мм. Пример компоновочного чертежа вы можете увидеть на рисунке.

компоновочный чертеж автомобиля