Устройство двигателя

Устройство двигателяДвигатель – энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. Еще двигатель называют "мотором", что было позаимствовано из немецкого языка. Различают различные типы двигателей из которых широкое распространение получили двигатели внутреннего сгорания и электрические двигатели. Существует более подробная классификация двигателей внутреннего сгорания.

Устройство двигателя внутреннего сгорания состоит из двух механизмов:

Устройство КШМ1) Кривошипно-шатунного механизма (КШМ) - преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала. Детали КШМ делят на две группы: подвижные детали КШМ и неподвижные детали КШМ. 

Подвижные детали КШМ: поршень , поршневой палец, шатун, коленчатый вал, маховик.

Неподвижные детали КШМ: блок цилиндров, головка цилиндров, картер маховика и сцепления, гильзы цилиндров, крышка блока, крепежные детали, кронштейны, прокладки.

2) Газораспределительного механизма (ГРМ) - служит для своевременного открытия и закрытия впускных и выпускных клапанов двигателя, обеспечивая качественное наполнение цилиндров двигателя свежим зарядом, их очистку от отработавших газов и герметизацию цилиндров при сжатии и рабочем ходе поршня.

Неисправности двигателя автомобиля

Неисправности двигателя автомобиля

Как запустить двигатель, если он не заводится?

Замена ремня ГРМ своими руками

Двигатель состоит также из пяти систем:

  • Система охлаждения - предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.
  • Система смазки - служит для подвода масла к трущимся поверхно­стям деталей двигателя, частичного отвода теплоты и продуктов изнаши­вания.
  • Система зажигания - служит для создания тока высокого напряжения и распределения его по цилиндрам двигателя и воспламенения рабочей смеси в камере сгорания в определенные моменты.
  • Система пуска - служит для первоначального вращения коленчатого вала, что обеспечивает запуск двигателя.

 Устройство двигателя для новичков

Поршневые двигатели внутреннего сгорания классифицируют по следующим признакам:

1) По назначению:

-транспортные

-стационарные

2) По способу осуществления рабочего цикла:

-четырехтактные

-двухтактные

3) По способу смесеобразования: (внешнее и внутреннее)

4) По способу воспламенения:

-с принудительным воспламенением от свечи зажигания (конструкция карбюраторного двигателя)

-с воспламенением от сжатия (самовоспламенение) (конструкция дизельного двигателя)

5) вид применяемого топлива:

-бензин

-дизельное топливо

-газ

6) по числу цилиндров: одноцилиндровые и многоцилиндровые

7) по расположению цилиндров: однорядные, двухрядные,V-образные.

8) по способу наполнения свежим зарядом:

-без наддува

-с наддувом

9) по охлаждению: жидкостное и воздушное

Для изучения общего устройства автомобиля и остальных его элементов заходите в раздел "Устройство и ремонт автомобиля".

Как сделать

капитальный ремонт

двигателя самому?

Запресовка

поршневых пальцев.

Диагностика двигателя Не дорого!

Ремонт головки блока

цилиндров двигателя

шаг за шагом

МЕТОДЫ УПРОЧНЕНИЯ РАБОЧЕЙ ПОВЕРХНОСТИ ГИЛЬЗ ЦИЛИНДРОВ ДВИГАТЕЛЕЙ

МЕТОДЫ УПРОЧНЕНИЯ РАБОЧЕЙ ПОВЕРХНОСТИ ГИЛЬЗ ЦИЛИНДРОВ ДВИГАТЕЛЕЙ

При эксплуатации автомобиля в различных условиях возникает необходимость повышения износостойкости и антифрикционных качеств рабочей поверхности гильз за счёт специальной обработки или методов упрочнения.

Провести сравнительный анализ методов упрочнения можно лишь условно, поскольку результаты исследований не всегда подтверждаются однотипными данными результатов (часов работы, километров пробега, износа и т.д.). Кроме того, исследование новых методов упрочнения проводят, как правило, в сравнении с различными одним-двумя уже известными методами, а показания сравниваемых характеристик приводится на уровне "во столько-то раз… (на…% и т.п.)", что также искажает представление об общей оценке их эффективности.

Легирование чугуна гильз цилиндров, рассмотренное в предыдущем разделе, является одним из методов упрочнения. К сказанному выше необходимо добавить, что упрочнение происходит в результате торможения дислокаций на внедрённых атомах, что существенно изменяет сопротивление их движению и обеспечивает упрочнение металлической матрицы, повышение её сопротивления пластическим деформациям и меньшее снижение твёрдости при нагреве .

Виды химико-термической обработки 

Наиболее распространённые виды химико-термической обработки (ХТО) – азотирование, сульфидирование и фосфатирование. Они позволяют сократить расход Ni, Cr, Cu за счёт использования для изготовления гильз менее легированных материалов.

Азотированием достигается значительное повышение (»40НRС) твёрдости, износо- и коррозионостойкости рабочей поверхности гильз за счёт образования в ней карбонитридной фазы, которая имеет достаточную пластичность и становится рабочим элементом упрочнённого слоя. В работе указывается, что монолитные гильзы цилиндров двигателя ЗИЛ-130 из СЧ 24-44 после азотирования имели износостойкость в 1,5 – 1,9 раза выше, чем серийные с нерезистовой вставкой, при пробеге автомобиля 120…160 тыс.км. При этом во столько же раз уменьшалось изнашивание поршневых колец.

Однако, упрочнённый азотированием слой плохо прирабатывается и может выкрашиваться в процессе эксплуатации [  ], при этом шероховатость поверхности ухудшается до Rа=0,63…2,5 мкм [  ]. Поэтому упрочнение азотированием не рекомендуется для двигателей автомобилей, работающих в запылённых карьерах.

При сульфидировании на рабочей поверхности гильзы образуется слой сернистого железа, который хорошо прирабатывается, повышает маслоёмкость рабочей поверхности, предотвращает схватывание с поршневыми кольцами, обеспечивает стабильно низкий коэффициент трения, увеличивает сопротивление изнашиванию, имеет надёжное сцепление с основным материалом. Однако увеличена склонность к образованию сернистых соединений и коррозии.

"Аналогичные свойства имеет и фосфатированный слой. Кроме того, он коррозионностойкий".

Главными недостатками всех видов ХТО являются малая глубина внедрения в основной материал (?0,3-0,35 мм), при этом окончательное периодическое хонингование гильз под ремонтный размер затруднено и ещё несколько её уменьшает; поверхностный слой не может длительное время противостоять высоким нагрузкам, при которых работает пара гильза - поршневое кольцо [  ]; этот метод упрочнения довольно энергоёмок и дорог.

Поверхностное пластическое деформирование

Поверхностное пластическое деформирование (ППД) – эффективный способ повышения износостойкости трущихся поверхностей детали в условиях граничного трения, основанный на использовании пластических свойств материала. В результате такой обработки удаляются риски и микротрещины от предыдущей обработки, увеличиваются твёрдость, износо- и коррозионостойкость поверхности и её усталостная прочность. В настоящее время существует значительное количество способов ППД. Об эффективности способов ППД по сравнению с наиболее распространёнными видами чистовой обработки гильз цилиндров можно судить по данным табл..

Результаты экспериментов показали, что износ поверхностей у образцов после упрочняющей обработки в период приработки меньше в 1,1-1,8 раза, а темп изнашивания в период естественного изнашивания меньше в 2 раза.

Таблица .

Вид  и  способ  обработки Класс точности Шероховатость Ra, мкм
резание

растачивание

хонингование

шлифование

3-2 2,5-1,25
2-1 0,62-0,08
2-1 0,16-0,125
ППД

раскатывание: -роликами

-шариками

2-1 0,32-0,08
2 0,32-0,08

Поверхностный слой, раскатанный при оптимальных режимах, имеет повышенную (на 18-27%) микротвёрдость. Наибольшее её повышение наблюдается у перлитных чугунов, графитовые включения которых имеют меньшую длину, более обособлены и завихрены. Толщина слоя с повышенной микротвёрдостью колеблется в пределах 0,05-0,5 мм: чем больше диаметр деформирующего элемента, тем толще слой с повышенной микротвёрдостью. Кроме того, при раскатывании происходит некоторое измельчение графитовых включений, зёрна перлита после деформации имеют другую ориентировку по сравнению с исходной. Форма зёрен становится сплюснутой в направлении радиальных сил деформации. Вместе с тем, в подавляющем большинстве случаев, как утверждают авторы работ можно подобрать оптимальные параметры деформирующего элемента, обеспечивающие сохранение или даже улучшение исходной макрогеометрии Несомненным положительным моментом следует считать то, что ППД является окончательной операцией и возможно как в промышленном, так и в ремонтном производстве.

Однако, оно лишь в незначительной степени исправляет погрешности предшествующей обработки. Поэтому предшествующая обработка заготовок должна быть достаточно точной. Существенную роль в достижении необходимого качества поверхности играет величина силы воздействия на обрабатываемую поверхность, число ходов инструмента, подбор деформирующего элемента.

В работах приводятся примеры исследований упрочнения гильз цилиндров ППД с одновременным нанесением антифрикционного покрытия. По утверждению авторов работ этот метод превосходит по эффективности фосфатирование, направленное хонингование и алмазное вибровыглаживание, а полученные результаты после пробега укомплектованных двигателей 5-25 тыс.км показали, что обработка гильз этим методом в сравнении с алмазным хонингованием позволяет: повысить ресурс работы деталей ЦПГ в 1,9-2,6 раза; ускорить приработку в паре гильза – кольцо до 2 раз; сократить расход топлива двигателей ЗМЗ-53, ЗМЗ-24 на 0,4-0,5л/100 км; уменьшить коэффициент трения до 30%; повысить в 1,8-5,0 раз износостойкость рабочей поверхности гильзы; подвергать обработке только её верхнюю наиболее изнашиваемую часть.

Существенным недостатком этого метода является малая толщина антифрикционного слоя (до 5 мкм), что в условиях ведущего абразивного изнашивания будет недостаточно и, как следствие, может вызвать другие виды износа, уменьшая ресурс гильзы.

С целью повышения износостойкости рабочей поверхности гильз в современном автомобильном двигателестроении для большинства гильз цилиндров двигателей, в том числе и зарубежных применяется её закалка. Термообработка закалкой серого чугуна с перлитной структурой позволяет преобразовать его в чугун с мартенситной структурой.

Закалка гильз, проводимая токами высокой частоты (ТВЧ), позволяет получить рабочую поверхность, упрочнённую на глубину до 2,5 мм (ЯМЗ – 1,0-2,5), КамАЗ–?1,0 мм). Её твёрдость после закалки ТВЧ достигает 38-48 НRС в зависимости от различных факторов. Удельный износ таких гильз составляет в зависимости от условий эксплуатации автомобиля 0,5-2,0 мкм/1000 км. Достаточная глубина закалённого слоя позволяет производить перешлифовку гильз под ремонтные размеры, что увеличивает ресурс её работы.

Однако при закалке рабочей поверхности гильз ТВЧ существует большая вероятность геометрической деформации, образования трещин на закаливаемой поверхности, получения неоднородной твёрдости как по окружности, так и по высоте, неоднородности структуры (наличие обособленных микроучастков структурно-свободного феррита в структуре закалённого слоя и т.п.), что является причиной повышенного износа гильз цилиндров. Для предотвращения этих нежелательных дефектов исследователи подбирают оптимальные режимы закалки (время нагрева под закалку, наличие подогрева перед закалкой, интенсивность наружного и (или) внутреннего охлаждения и т.д.) для каждого определённого химического состава чугуна.

Применение в качестве теплового источника лазера большой мощности позволяет устранить названные для закалки ТВЧ недостатки за счёт  управляемого подвода теплоты, при котором не требуется подача охлаждающей среды для закалки нагретой зоны, так как мартенситное затвердевание происходит вследствие самозакалки. Максимальная глубина мартенситной структуры при лазерной закалке может достигать 1,5 мм практически для всех применяемых марок чугуна. Испытания показали, что гильзы, упрочнённые лазерным лучом, имеют износостойкость и твёрдость рабочей поверхности большую или равную азотированным, гильзам с нирезистовой вставкой и упрочнённым ТВЧ.

Следует отметить, при обработке лазерным излучением графит, находящийся на рабочей поверхности гильзы цилиндра, выгорает под действием высоких температур, что приводит к увеличению шероховатости поверхности и ряду других отрицательных при работе детали последствий. Также необходимо дорогое оборудование для проведения лазерной закалки.

Из вышеизложенного следует, что методы упрочнения рабочей поверхности гильз цилиндров как широко распространённые, так и альтернативные, должны в результате воздействия на неё устранять недостатки, вызванные литейным процессом и, в зависимости от назначения и химического состава, придавать детали качества, необходимые для обеспечения ресурса работы двигателя. Однако, как видно из обзора источников  наработки двигателей до отправки в капитальный ремонт, в том числе с указанными методами упрочнения, в реальных условиях эксплуатации существенно ниже нормативных. Таким образом, поиск новых способов и методов упрочнения рабочей поверхности гильзы цилиндров для нынешнего состояния автомобильного двигателестроения является объективной необходимостью.

Механизмы газораспределения

МЕХАНИЗМЫ ГАЗОРАСПРЕДЕЛЕНИЯ ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ

Проявляются в снижении мощности двигателя, неравномерности его работы, повышенном расходе топлива, стуке клапанов.

Двигатель не развивает полной мощности при нарушении регулировки тепловых зазоров в механизме газораспределения, неплотном прилегании клапанов к их седлам.

Увеличение зазоров в приводе клапанов вызывает увеличение ударных нагрузок на сопряжение седло — клапан. Уменьшение зазоров в результате нарушения регулировок или отложения нагара приводит к неполной посадке клапанов в седло и нарушению герметичности цилиндров, что проявляется в повышенном стуке клапанов.

При значительной негерметичности цилиндров сильно снижается давление в конце такта сжатия и при такте расширения, что увеличивает расход топлива, снижает мощность двигателя, затрудняет его пуск и приводит к неравномерной работе. Неравномерность работы двигателя также может произойти из-за потерь упругости или поломки пружин механизма газораспределения, заедания клапанов в направляющих втулках, износа шестерен распределительного вала, толкателей, направляющих втулок и осей коромысел. В двигателях ЗИЛ-130 и ЗИЛ-645 возможно заедание шариков и пружин механизма поворота клапанов.

В процессе эксплуатации легковых автомобилей вследствие износа и вытягивания ремня, износа шарнирных соединений звеньев цепи и других деталей привода распределительного вала происходит удлинение ремня или цепи, что вызывает вибрацию, значительный шум и снижение мощности двигателя.

Механизмы газораспределения Техническое обслуживание

Ежедневно после прогрева двигателя необходимо на слух убедиться в отсутствии стуков при различной частоте вращения коленчатого вала.

При ТО-1 прослушивают работу клапанного механизма и при необходимости регулируют зазоры между клапанами и коромыслами. При ТО-2 проверяют и при необходимости подтягивают крепление крышки распределительных шестерен.

На двигателях ВАЗ после первых 2000 км пробега, а в дальнейшем через 30 000 км необходимо подтягивать гайки крепления корпусов подшипников распределительного вала. На двигателях легковых автомобилей после 15000 км пробега нужно проверять состояние и степень натяжения ремня или цепи привода распределительного вала и осуществлять их натяжение.

При наличии складок, трещин, расслоения и разлохмачивания приводного ремня возникает опасность разрыва при работе двигателя, поэтому он должен быть заменен ранее установленного срока (60000 км пробега). В случае замасливания ремень тщательно протирают ветошью, смоченной бензином.

На автомобиле «Москвич-2140» для предупреждения преждевременного износа и снижения шума цепного привода распределительного вала необходимо первые его две подтяжки проводить через 5000 км пробега, а последующие — через каждые 10 000 км пробега.

Проверяют и регулируют тепловые зазоры клапанов после каждых 30 000 км пробега, а при необходимости и в более короткие сроки.

Механизмы газораспределения

Способы выявления и устранения неисправностей

Техническое состояние механизма газораспределения оценивают по наличию и характеру стуков, герметичности клапанов, упругости клапанных пружин и изменению давления во впускном и выпускном трубопроводах.

Если на холостом ходу при малой частоте вращения коленчатого вала прослушивается стук в местах расположения втулок клапанов, это указывает на обеднение горючей смеси и заедание впускных клапанов. Частые стуки, сливающиеся в общий шум, характерны при большом износе распределительных шестерен и возможной поломке их зубьев.

Увеличивая частоту вращения коленчатого вала, прослушивают двигатель в местах расположения подшипников распределительного вала. Ровный стук среднего тона, по характеру схожий со стуком шатунных подшипников коленчатого вала, свидетельствует об усиленном износе подшипников и шеек распределительного вала.

Резкий стук на всех режимах работы двигателя в зоне крышек коромысел при одновременном падении мощности двигателя и его работе с перебоями указывает на увеличение зазоров между бойками коромысел и торцами стержней клапанов.

Герметичность клапанов определяют одновременно с замерами герметичности цилиндров компрессометрами, прибором К-69М, газовым расходомером. Негерметичность клапанов может быть одной из причин снижения компрессии.

Для проверки упругости клапанных пружин без разборки клапанного механизма служит прибор КИ-723 (рис. 21). Сняв крышки клапанного механизма, устанавливают ножки 5 прибора

Измерение упругости клапанных пружин прибором КИ-723:

 1 — рукоятка, 2 — шток, 3 — кольцо, 4 — корпус, 5 — ножки прибора.

На тарелку пружины, перемещают кольцо 3 в крайнее верхнее положение и нажимают на рукоятку 1 с таким усилием, чтобы пружина осела на 0,5—1 мм. Сняв прибор, определяют по его показаниям усилие сжатия и повторяют измерение. Если усилие меньше предельного, необходимо заменить пружину или подложить под нее прокладку.

Изменение давления во впускном и выпускном трубопроводах фиксируют устанавливаемыми в трубопроводах  датчиками.  Зазор между бойком коромысла и торцом стержня клапана (впускного и выпускного) холодных двигателей ЗМЗ-53-11 и ЗИЛ-130 должен составлять 0,25—0,30 мм, а двигателя ЗИЛ-645- 0,40— 0,45 мм. Для регулировки зазоров снимают крышки головок цилиндров и проверяют крепление головок цилиндров к блоку цилиндров и стоек коромысел к головкам цилиндров. При необходимости гайки (у двигателя ЗМЗ-53-11) или болты (у двигателей ЗИЛ-130 и ЗИЛ-645) подтягивают. У двигателя ЗИЛ-645 снимают крышку люка и нижней части картера маховика и устанавливают фиксатор маховика, расположенный на картере маховика, в нижнее положение. Поршень первого цилиндра устанавливают в ВМТ конца такта сжатия.

Такт сжатия определяют, проворачивая коленчатый вал рукояткой до тех пор, пока пробка из ветоши или бумаги, установленная в отверстие головки цилиндров на место вывернутой свечи зажигания или форсунки, не будет вытолкнута. Чтобы поршень первого цилиндра занял положение в. м. т., коленчатый вал медленно проворачивают: у двигателя ЗМЗ-53-11 —до совмещения метки на шкиве коленчатого вала с выступом указателя, у двигателя ЗИЛ-130—до совмещения отверстия на шкиве коленчатого вала с меткой в. м. т. на шкале указателя, у двигателя ЗИЛ-645 — до совмещения рисок на муфте ТНВД.

В этом положении на двигателе ЗИЛ-645 проверяют и регулируют зазоры впускных клапанов 1, 5, 7, 8-го цилиндров и выпускных клапанов 2, 4, 5, 6-го цилиндров. У остальных клапанов зазор регулируют после поворота коленчатого вала на 360° (полный оборот). На двигателях ЗМЗ-53-11 и ЗИЛ-130 зазоры у клапанов регулируют в последовательности, соответствующей порядку работы цилиндров (1—5—4—2—6—3—7—8), проворачивая коленчатый вал при переходе от цилиндра к цилиндру на 90°.

Зазоры в клапанном механизме проверяют щупом. Щуп, толщина которого равна минимальному зазору, должен проходить свободно, а щуп, равный по толщине максимальному зазору, — с усилием. В противном случае зазор необходимо регулировать. Ослабив контргайку регулировочного винта и удерживая ее ключом, вставляют в зазор щуп необходимой толщины и вращают винт до получения требуемого зазора. Удерживая винт отверткой, затягивают контргайку и снова проверяют зазор.

На двигателе ВАЗ-2105 тепловой зазор клапанов регулируют в такой последовательности:

Регулировка теплового зазора клапанов

Отсоединяют от карбюратора трос управления воздушной заслонкой и снимают воздухоочиститель, предварительно ослабив хомуты и сняв шланги вентиляции картера и подачи теплого воздуха.

Отсоединяют трос привода дороссельной заслонки карбюратора от рычага, расположенного на крышке головки цилиндров.

Вывертывают свечи зажигания.

Снимают крышку головки цилиндров, отвернув ее крепления.

Поворачивая коленчатый вал специальным ключом за шестигранник храповика, устанавливают поршень 4-го цилиндра в положение в. м. т. в конце такта сжатия, совместив метку Р на зубчатом шкиве распределительного вала с меткой 1 на выступе корпуса подшипников.

В этом положении проверяют и, если необходимо, регулируют зазоры у впускного клапана 3-го (6-й кулачок) и выпускного 4-го (8-й кулачок) цилиндров. Далее последовательно регулируют зазоры у клапанов впускного 4-го и выпускного 2-го цилиндров, впускного 1-го и выпускного 3-го цилиндров, проворачивая после регулировки каждой пары клапанов коленчатый вал на 180°. При этом следует иметь в виду, что первым (считая от радиатора) является выпускной клапан, затем следуют два впускных, два выпускных, два впускных и выпускной клапан у всех изучаемых двигателей.

Для регулировки зазора ослабляют контргайку регулировочного болта и поворотом последнего устанавливают с помощью щупа зазор между рычагом и затылком кулачка, затягивают контргайку и устанавливают на место снятые ранее приборы.

На двигателях ВАЗ-2108 и ВАЗ-2109 регулировать тепловые зазоры рекомендуется на станции технического обслуживания.

На двигателе автомобиля «Москвич-2140» регулировку выполняют в такой последовательности:

Отсоединить шланг вентиляции картера от крышки головки цилиндров, отвернуть гайки шпилек и снять крышку.

Проворачивая рукояткой коленчатый вал, установить в положение в. м. т. в конце такта сжатия поршень 1-го цилиндра, наблюдая за движением коромысел привода клапанов этого цилиндра. После закрытия впускного клапана (левый по ходу автомобиля) совместить вторую (по направлению вращения) метку на шкиве коленчатого вала с острием установочного штифта на крышке распределительных шестерен.

Проверить величину зазора у обоих клапанов между торцами наконечника регулировочного винта и стержнем клапана, устанавливая в зазор плоский щуп, который должен проходить с некоторым усилием (задержкой). Если щуп проходит свободно или совсем не проходит, регулировать его.

Для регулировки зазора надеть на торец регулировочного винта специальный торцовый ключ из комплекта инструмента водителя, ключом ослабить контргайку винта и, поворачивая последний, установить по щупу нормальный зазор. Затем, удерживая торцовым ключом регулировочный винт, затянуть контргайку.

Аналогично отрегулировать зазоры последовательно в третьем, четвертом и втором цилиндрах, проворачивая каждый раз коленчатый вал на 180°.

Поставить на место крышку и присоединить шланг вентиляции картера.

При неплотном прилегании клапанов к седлам механизм газораспределения разбирают. Клапаны и седла тщательно очищают от нагара, промывают и контролируют. Если тарелка и стержень клапана не покороблены, нет прогара на фасках клапана и седла, то при наличии мелких раковин на фасках при незначительном их износе герметичность клапана можно восстановить притиркой.

Блок картер двигателя

Блок картер двигателя

Блок – картер является корпусной деталью, представляет собой чугунную отливку, верхняя часть которой образует блок цилиндров, а нижняя – верхнюю часть картера коленчатого вала. В верхней части блок – картера выполнены вертикальные расточки, в которых установлены гильзы цилиндров. Полость между стенками блок – картера и гильзами служит для прохода ОЖ. В поперечных перегородках нижней части блок – картера расточены поверхности, предназначенные для подвески коленчатого вала. Вместе с крышками они образуют постель для коренных подшипников коленчатого вала. Для обеспечения соосности коренных подшипников расточка постелей блок – картера производится в сборе с крышками с одной установки. Поэтому крышки коренных подшипников невзаимозаменяемые.

В передней стенке блок – картера запрессована бронзовая втулка, которая является передней опорой распределительного вала, две другие опоры расточены в теле блока.

На наружных боковых поверхностях блок – картера имеется ряд обработанных привалочных плоскостей для крепления сборочных единиц и агрегатов. К переднему торцу блок – картера крепится картер и крышка картера распределительных шестерен. К крышке картера крепится разъёмная передняя опора. К задней привалочной  плоскости блок – картера крепится картер маховика. Картер маховика выполнен из алюминиевого сплава. Картер маховика дизелей со стартерным пуском – фланец для крепления картера. Установочная шпилька, ввёрнутая в резьбовое отверстие на картере маховика, служит для определения положения поршня первого цилиндра в в.м.т.

В связи с применением на дизелях охлаждения поршней маслом в блок – картере касательно каналу главной масляной магистрали выполнены четыре сверления, в которые устанавливаются форсунки. Выходя из сопла форсунки, струя масла омывает донышко поршня, охлаждая его.

Вкладыши коренных подшипников изготовлены из биметаллической полосы сталь – сплав А020 – 1.

Гильзы цилиндров съемные, “мокрого” типа, изготовлены из специального чугуна. Внутренняя поверхность гильзы закалена ТВЧ. Гильза устанавливается в блок – картер по двум центрующим пояскам: верхнему и  нижнему. В верхнем пояске гильза закрепляется буртом, в нижнем уплотняется резиновыми кольцами, размещенными в канавках блок – картера.

Полость между стенками блока цилиндров и гильзами образует рубашку охлаждения, заполненную ОЖ.

Головка цилиндров лита из чугуна, общая для всех цилиндров. Для  уплотнения плоскости разъёма между головкой и блоком цилиндров установлена прокладка из асбостального полотна. В головке выполнены впускные и выпускные каналы, закрываемые клапанами. Для совершенствования процесса смесеобразования впускные каналы в головке цилиндров дизелей выполнены по типу винтового канала, создающего вращательное движение воздушного заряда вокруг оси цилиндра. Для повышения износостойкости посадочных мест под клапаны головки цилиндров установлены седла из специального жаропрочного сплава. На головке цилиндров имеется четыре гнезда для установки форсунок. Внутренние полости, выполненные в головке цилиндров, служат для прохода ОЖ.

На головке монтируется клапанный механизм, который закрыт алюминиевым колпаком. Стык между колпаком и корпусом колпака уплотнён паронитовой прокладкой.

Дизель 1,9 TDI Golf, VW, Audi

Дизель 1,9 TDI Golf, VW, Audi

Здесь я попытался собрать информацию о дизельном двигателе 1.9 TDI Golf, что возможно пригодится вам, относительно ремонта, обслуживания и эксплуатации дизеля.

История Дизель 1,9 TDI

Двигатель 1,9TDI разработан еще в начале 90 годов и устанавливался на автомобили марок Volkswagen, Audi, Skoda до 2005 года, после чего на смену пришел двигатель 2.0 TDI.

Преимущества Дизель 1,9 TDI

Дизель 1,9 TDI обладает хорошим крутящим моментом и низким расходом топлива. Основным преимуществом дизеля является его надежность, которая на очень высоком уровне при условии своевременного технического обслуживания. Двигатель 1,9 TDI более либерален к некачественному дизельному топливу и, в сравнении с 2.5 TDI, может с гордостью пережить пару заправок «плохим топливом» практически без последствий. Турбонаддув тоже качественный и выходит из строя очень редко из-за использования некачественного масла или чрезмерных нагрузок в процессе экплуатации.

Дизель 1,9 TDI Golf, VW, Audi

Существует более мощная модификации двигателя 1.9 TDI Pumpe Dues которая требует менее частой замены ремней (90 тысяч против 70).

Модели
автомобилей с двигателем 1.9 TDI: Volkswagen Golf, Volkswagen Passat, Volkswagen Bora, Volkswagen Touran, Volkswagen Sharan, Volkswagen T4, Skoda Octavia, Audi A3, Audi A4, Audi A6.

Послегарантийное техобслуживание
Audi и Volkswagen с дизельными двигателями.
Если вы хотите быть уверены в немецком качестве, надежности и безотказности вашего автомобиля, необходимо своевременно и качественно проводить техническое обслуживание автомобиля.

TDI Service Russia настоятельно рекомендует проводить техническое обслуживание дизельных двигателей TDI не реже, чем 1 раз на 8 тысяч километров пробега. При этом настаивает на использовании оригинальных автозапчастей и автомобильных масел. На период между сервисного обслуживания влияет не только режимы эксплуатации автомобиля, но и климатические, дорожные условия и самое главное качество дизельного топлива.

Необходимый минимум ТО дизеля 1.9 TDI: замена масла, масляного и воздушного фильтров. Диагностика автомобилей Audi и Volkswagen позволит своевременно выявить все неисправности и обеспечить долговечную работу основных узлов автомобиля.

Сроки замены масла, масляного фильтра, воздушного фильтра двигателя 1,9 TDI:

Каждые 8 тысяч километров.

Сроки замены топливного фильтра двигателя 1,9 TDI:

Каждые 16 тысяч километров.

Сроки замены ремня и ролика ГРМ, ремня и ролика кондиционера, помпы двигателя 1,9 TDI:

Каждые 70 тысяч километров (оригинальные запчасти).


Для двигателей 1,9 TDI Pump Duse и 2,5 TDI:

Каждые 90 тысяч километров (TDI Service Russia).

Замена расходных автозапчастей дизеля 1.9 TDI:

1. Замена воздушного фильтра.

2. Замена топливного фильтра.

3. Замена масла и масленого фильтра двигателя.


Интересно:
1. Сажевый фильтр DPF

2. Клапан EGR

3. Турбина и манипуляции

4. Форсунки

5. Настройка ГРМ (camshaft timing)


1. Сажевый фильтр DPF

Большинство двигателей 1.9 (BJB, BKC, BRU, BXE, BXF данный вопрос не беспокоит в виду отсутствия оного, кроме BLS).

2. Клапан EGR

3. Турбина

4. Форсунки

5. Настройка ГРМ (camshaft timing)


Смещение угла работы клапанов происходит по причине растягивания ремня в процессе эксплуатации. Процедура настройки углов работы клапанов достаточно сложная и лучше проводить ее у специалистов.
Для проведения правильного ремонта необходимо провести качественную диагностику при помощи прибора
VAG-COM. При отклонении углов работы клапанов требуется настройка углов клапанов. И рассмотрим как заменить ремень ГРМ дизельного двигателя 1.9 TDI.

Устройство картера двигателя: назначение и особенности конструкции

Устройство картера двигателя: назначение и особенности конструкции

Картер это одна из главных неподвижных деталей двигателя, в нижней части которой установлен коленчатый вал, а в верхней части – блок цилиндров. Картер крепится к блоку цилиндров за счет крепежных болтов, а между ними устанавливается уплотнительная прокладка.

Устройство картера двигателя

Конструкция картера

Как правило, картер изготавливают из алюминиевого сплава. Можно встретить не только картеры двигателя, но и картеры редуктора, картеры коробки передач, картер раздаточной коробки и т.д. Для защиты картера двигателя устанавливается специальный поддон, который изготавливается из стальной штамповки либо алюминиевого сплава.

Главное назначение поддона картера качественная и надежная защита кривошипно-шатунного механизма (КШМ) от загрязнений и течи масла. Поддон картера выступает как резервуар. В нижнем отсеке имеется специальное отверстие с пробкой для слива моторного масла.

Для увеличения жесткости картера стенки картера выполнены в виде поперечных перегородок с углублениями, в которые устанавливаются подшипники коренных шеек коленчатого и распределительного вала.

Для своевременного отвода масла, стремящегося вытечь наружу, на стенках картера и в крышках подшипников установлены так называемые отражатели масла и дренажные канавки.

Поддон картера двигателя выступает хранилищем моторного масла, где оседают частички металла и загрязнения в процессе работы двигателя. В некоторых двигателях для удержания стружки образовавшейся на дне в процессе трения деталей или на стенках поддона устанавливаются магниты, притягивающие к себе металлические примеси.

Для снижения негативного влияния картерных газов, их принудительно выкачивают из картера с помощью системы вентиляции картера. Картерные газы выходят через выхлопную систему, а небольшая их часть попадает в картер из камер сгорания. Картерные газы газы оказывают негативное влияние не только на качество масла, но и на остальные металлические и резиновые детали двигателя.

Что такое сухой картер

Название «сухой картер означает то, что в нем нет масла, как в обычном картере, который служит резервуаром для сбора и хранения масла. В двигателе с сухим картером масло также стекает в поддон, но масляные насосы выкачивают масло из картера в специальные масляные резервуары. Такая система смазки двигателя зарекомендовала себя на спортивных, гоночных автомобилях, и внедорожниках.

Устройство двигателей с сухим картером

Устройство двигателей с сухим картером используются на автомобилях с повышенными динамическими и инерционными нагрузками, из-за которых масло в обычном картере очень сильно плескалось бы и пенилось.