Капитальный ремонт двигателя автомобиля

Ремонт головки блока цилиндров 

Ремонт головки блока цилиндров

Комплектование деталей для

ремонта головки блока цилиндров.

Как ремонтировать головку блока

цилиндров самому.


Капитальный ремонт двигателя автомобиля

Одной из самых важных частей автомобиля по прежнему остается двигатель. В целях экономии средств владелец автомобиля сталкивается с выбором, отремонтировать или купить новый двигатель.  Очень важно найти такой автомобильный сервис, где ремонт и обслуживание двигателя проводят качественно и быстро. Часто бывает так, что хозяин автомобиля надолго расстается со своим автомобилем из-за не профессионализма работников сто.

Самые разнообразные работы по капитальному ремонту двигателя автомобиля начинаются с диагностики двигателя. Качественно выполнять работы по ремонту бензиновых и дизельных двигателей возможно лишь при наличии современной аппаратуры и квалифицированного персонала. Вы избавите себя от большого количества проблем если правильно выберете сервис, где будет обслуживаться ваш автомобиль.

Капитальный ремонт двигателей автомобилей должен осуществляться на специализированных станциях технического обслуживания. Опытные специалисты по ремонту двигателей внутреннего сгорания смогут взять на ремонт и обслуживание практически любой автомобиль.

Ремонт двигателя без снятия с автомобиля

Конечно, если вы беретесь за капитальный ремонт, перед этим вам потребуется провести дефектацию деталей двигателя. Но существует перечень ремонтных операций, которые можно провести без снятия двигателя.

Начало ремонтных работ двигателя должно начинаться с мойки моторного отсека и мойки двигателя. Мойка двигателя проводится для того, чтобы не загрязнить внутренние детали двигателя. Если вы решили заменить прокладку двигателя (замена прокладки двигателя проводится в случае течи масла или охлаждающей жидкости).

Мы с вами рассмотрим ремонтные работы, которые можно провести без снятия двигателя:

Замена гильз и деталей шатунно-поршневой

группы двигателя 

Замена гильз и деталей шатунно-поршневой группы двигателя

Разборочно-сборочные работы

деталей цилиндро-поршневой группы,

комплектование деталей гильзо-поршневой

группы, ремонт и установка

шатуннопоршневой группы двигателя

- Замена прокладки масляного поддона двигателя;

- Замена головки блока цилиндров или ремонт головки блока;

- Замена прокладки впускного и выпускного коллектора;

- Замена сальника коленчатого вала.

Без снятия двигателя можно провести следующие ремонты элементов двигателя:

-         Ремонт водяного насоса;

-         Ремонт стартера;

-         Ремонт распределителя зажигания;

-         Ремонт генератора;

-         Ремонт бензонасоса;

-         Ремонт карбюратора;

-         Ремонт головки блока цилиндров;

-         Ремонт клапанного механизма.

Без снятия двигателя можно выполнить и такие работы, как:

- замена поршневых колец;

- замена шатунно-поршневой группы;

Выполнять капитальный ремонт двигателя без снятия не рекомендуется.

Основания к проведению  капитального ремонта двигателя

Как поменять поршневые кольца

двигателя автомобиля 

как поменять поршневые кольца

Замена поршневых колец

своими руками

Как понять, нужно делать капитальный ремонт двигателя или нет? Ответить на этот вопрос однозначно и сразу невозможно, так как для принятия решения о выполнение капитального ремонта двигателя требуется проанализировать большое количество показателей.

Многие автомобилисты ошибочно считают, что если большой пробег автомобиля, то существует необходимость в проведении капитального ремонта двигателя, но это не всегда так, аналогично малый пробег не может говорить об исключении необходимости в проведении капитального ремонта двигателя.

На ресурс работы двигателя очень влияет правильная эксплуатация и своевременное обслуживание. Несвоевременность обслуживания может значительно сократить ресурс работы двигателя.

Признаки износа двигателя

 Диагностика двигателя

(приборный метод)

приборный метод диагностики двигателя

Такой признак, как повышение расхода масла говорит об износе поршневых колец и направляющих втулок клапанов (прежде чем делать такие выводы обязательно проверьте системы двигателя на наличие утечек моторного масла).

Следующим шагом диагностики двигателя будет измерение компрессии в цилиндрах двигателя, проверка герметичности камер сгорания.

Повышенный шум работы двигателя, лишние стуки могут быть причиной износа вкладышей коренных или шатунных подшипников. Точная диагностика двигателя предполагает измерение давление масла в системе с помощью манометра, для этого следует вывернуть датчик давления, провести замеры и сравнить их с техническими характеристиками двигателя.

Если давление масла в системе низкое – износ масляного насоса или опорных подшипников.

 Заделка трещин в корпусных

деталях двигателя

свердление отверстий

Как правило трещины

в блоке цилиндров,

головке блока являются

показателем к замене детали,

но существует способ ремонта

трещин блока цилиндров двигателя

Совокупность признаков повышенного износа двигателя, таких, как потеря мощности двигателя, неравномерная работа двигателя, повышенный шум работы, повышенный расход топлива и масла указывают на необходимость проведения капитального ремонта двигателя.

Капитальный ремонт предполагает восстановление деталей двигателя до технического состояния, указанного в технических характеристиках нового двигателя.

Капитальный ремонт состоит из следующих этапов:

-         Замена поршневых колец;

-         Хонингование цилиндров двигателя;

-         Установка новых поршней;

-         Шлифование коленчатого вала;

Проведение капитального ремонта дает новую жизнь вашему двигателю и приводит его технические характеристики к номинальным характеристикам.

Проведение капитального ремонта может затянуться на 2-3 недели, так как для ремонта и восстановления деталей (шлифования, расточки) может понадобиться много времени.

Заранее надо определиться с перечнем проводимых ремонтных работ и позаботится о наличии специального оборудования и инструментов. Очень важным для проведения капитального ремонта может оказаться наличие специальных приспособлений, которые значительно облегчают работу по ремонту двигателя. Проверьте наличие всех необходимых запчастей.

Обработка деталей под

ремонтный размер 

ремонтный размер

Самая дорогая деталь двигателя - блок цилиндров. Диагностика блока цилиндров является определяющим фактором для проведения капитального ремонта. Здесь существует альтернатива - восстановить блок цилиндров или купить блок цилиндров. И эту задачу надо решить после тщательной проверки блока цилиндров двигателя.

Капитальный ремонт двигателя автомобиля состоит из:

 Восстановление резьбы

резьбовая вставка

При проведении капитального ремонта двигателя часто сталкиваешся с проблемой повреждения резьбы (например, вы хотите плотно затянуть гайку крепления водяного насоса к блоку цилиндров, перетянули).

Как восстановить резьбу?

1)      Чистка двигателя

2)      Разборка-сборка автомобиля

3)      Диагностика двигателя

Нормальная работа двигателя подарит вам наслаждение при вождении автомобиля.

Как ремонтировать автомобиль?

Есть специальные сервисы, которые занимаются ремонтом двигателей в удобном для вас месте. Такие сервисы очень полезны, если ваш автомобиль вышел из строя где-нибудь в дороге.

Капитальный ремонт двигателя автомобиля состоит из ряда технологических операций, таких как расточка блока цилиндров, шлифовка коленчатого вала, шлифовка головки блока цилиндров, капитальный ремонт.

Во время диагностики специалисты сто должны обсудить с автовладельцем вопросы по восстановлению деталей двигателя и их замене.

 Ремонт трещин блока цилиндров двигателя

Ремонт трещин блока цилиндров двигателя

Как ремонтировать блок цилиндров двигателя?

Восстановление блока цилиндров заваркой,

способ заделки трещины блока цилиндров эпоксидкой.

 

1 Восстановление постелей блока цилиндров

2 Ремонт трещин блока цилиндров двигателя

3 Ремонт и эксплуатация двигателя

4 Ремонт и обслуживание двигателя

5 Ремонт дизельных двигателей

6 Ремонт двигателя ВАЗ

7 Ремонт двигателя

8 Индикатор

9 Ремень генератора

10 Замена ремня привода распределительного вала, автомобиля ВАЗ 2109

11 Съемники шкивов

12 Притирка клапанов

13 Рассухариватели клапанов

14 Выпрессовка пальцев

15 Запрессовка поршневых пальцев

Одним из успешных факторов, которые влияют на качественный ремонт и обслуживание двигателя является:

Ультразвуковое упрочнение (УЗУ)

Ультразвуковое упрочнение (УЗУ)

Если при упрочнении статическими методами ППД инструменту сообщают дополнительно ультразвуковое колебание с частотой 18-24 кГц и амплитудой 15-30 мкм, то они становятся ударными методами (ультразвуковое обкатывание и т.п.)

Схема ультразвукового упрочнения

Рисунок 3.3.27 - Схема ультразвукового упрочнения (УЗУ)

Используют также УЗУ, когда загружаемым рабочим телам, помещённым в замкнутый объём вместе с обрабатываемой деталью, сообщают ультразвуковые колебания, под действием которых происходит упрочнение обрабатываемой поверхности. Процесс (рис. 3.3.28.) напоминает виброударную обработку.

Схема УЗУ

Рисунок 3.3.28 - Схема УЗУ

1 – концентратор; 2 – камера; 3 – обрабатываемая деталь; 4 – стальные шарики.

При обычном ультразвуковом упрочнении инструмент 2 (рис. 3.3.29) под действием статической и значительной ударной силы, создаваемой колебательной системой (ультразвуковым генератором магнитострикционным преобразователем 5 и концентратором 3), пластически деформирует поверхностный слой обрабатываемой детали 1.

Схема ультразвукового упрочнения УЗУ

Рисунок 3.3.29 - Схема ультразвукового упрочнения.

1-обрабатываемая деталь; 2-рабочая часть инструмента; 3-концентратор; 4-ультразвуковой генератор; 5- магнитострикционный преобразователь; 6-направляющие

Статическую силу Рст можно прикладывать с помощью пружины или груза, под действием которого все устройство может свободно перемещаться по направляющим 6 и поджиматься к детали 1. По сравнению, например, с обкатыванием шаром (ОШ) ультразвуковое упрочнение отличается следующими особенностями и преимуществами:

1 - инструмент пластически деформирует поверхностный слой детали импульсно, с большой интенсивностью колебаний, в результате чего формирование сопровождается прерывистым и интенсивным трением;

2 - кратность приложения силы при деформировании инструментом поверхности в 400 раз более (при ОШ 12-20 раз);

3 - статическая сила, действующая на деталь, незначительна;

4 - скорость деформации — переменная, её максимальное значение 200 м/мин и более, что превышает скорость деформирования при ОШ в десятки и сотни раз;

5 - среднее давление, создаваемое в поверхностном слое детали под действием нормально направленной силы, в 3-9 раз больше, чем при ОШ;

6 - энергия, расходуемая на искажение кристаллической решётки и идущая на внутренние микроструктурные преобразования, при УЗУ значительно выше, чем при0Ш;

7 - температура места контакта инструмента с деталью в зоне деформирования 100-1500С, что в 3-5 раз меньше, чем при ОШ, а время нагрева при УЗУ очень мало (3 х 10-5 сек), поэтому не наблюдается снижения упрочнения, вызываемого действием высокой температуры;

8 - в процессе УЗУ вследствие относительно больших напряжений и многократного приложения нагрузки напряжённо-деформированное состояние специфично.

Множественное скольжение дополнительно тормозит дислокацию. Плотность дислокаций намного больше, чем при ОШ. В результате степень наклёпа повышается в 1,2-1,5 раза и соответственно увеличивается уровень остаточных сжимающих напряжений. Применение УЗУ может быть эффективно в следующих случаях:

1 - для деталей термически и химико-термически обработанных сталей У10А, У12, Х40, ШХ 15, сталей аустенитной структуры 12Х18Н9Т и др., где применение других методов не позволяет получить значительный упрочняющий эффект;

2 - для деталей и инструментов из твердых сплавов;

3 - для деталей малой и неравномерной жёсткости, так же УЗУ характеризуется небольшой статической силой и временем деформирования.

К параметрам режима относится: статическая сила , амплитуда  колебаний инструмента, радиус его округления , частота колебаний , эффективная масса инструмента , продольная подача , число рабочих ходов , скорость обработки детали .

Проведённые сравнительные исследования качества поверхностного слоя наплавленных деталей (коленчатые валы) после шлифования без ультразвука и выглаживания с УЗУ на рациональных режимах показали, что наибольший эффект получен на деталях после УЗУ. При этом твёрдость увеличилась до 30 % , толщина упрочнения составляет 0,6-0,8 мм, микротвердость увеличилась до 50 %, шероховатость уменьшилась с 1,63 до 0,2 мкм и образуется особый микрорегулярный ячеистый рельеф на поверхности .

Преимущества УЗУ

Важным преимуществом УЗУ является также образование в поверхностном слое наплавленных деталей остаточных напряжений сжатия значительной силы Уменьшение разброса твёрдости на поверхности наплавленного металла свидетельствует об образовании более однородной структуры .

Рациональным по качественным и эксплуатационным показателям наплавленных деталей является такой режим, при котором двойная амплитуда УЗК равняется 30...50 мкм, статическое усилие прижима инструмента и детали 400...600 Н, скорость вращения детали 0,33.. 0,99 м/с и продольная подача инструмента  0,120,15 м/об.

Сравнительные лабораторные испытания на износостойкость наплавленных и упрочнённых ультразвуковым выглаживающим инструментом образцов, вырезанных из натуральных шеек коленчатых валов, показали их меньший износ по сравнению с не упрочнённым, примерно в 7 раз, а по сравнению с образцами не наплавленными (контрольными) из стали 45, закалённой ТВЧ, примерно в 4,7 раза.

Стендовые и эксплуатационные испытания коленчатых валов двигателя ЗИЛ-130 восстановленных наплавкой и упрочненных ультразвуковым инструментом, показали, что поломок их по причине усталости не обнаружено, а износостойкость оказалась в 2,2 раза выше по сравнению с не упрочнёнными ( на 63 % выше износостойкости новых валов).

Шлифование шатунных шеек

ШЛИФОВАНИЕ ШАТУННЫХ ШЕЕК

Шлифование всех поверхностей любого вала, расположенных по оси его вращения, должно выполняться только в центрах. Если при шлифовании опорных или коренных шеек  коленчатого вала двигателя легкового автомобиля для его установки на шлифовальном станке используются кулачковые патроны - это гарантирует 100%-ный брак. Во-первых, при сжатии патронами возникает предварительная деформация, в случае чего после шлифования опорных шеек и снятия со станка будет иметь недопустимое биение шеек (чем тоньше вал, тем оно больше). Во-вторых, применение патронов требует специального выставления вала в станке, т.е. обеспечения минимального биения поверхностей вала, расположенных от патронов. Практика показывает, что в патронах сделать, не так просто, в то время как в центрах легко обеспечить биение у краев вала менее 0,015-0,020 мм. Как исключение в некоторых случаях допускается установка вала с одной стороны в патроне, а с другой - в центре.

Шатунные шейки шлифуются в специализированных станках для шлифования коленчатых валов. Такие станки имеют центросместительные приспособления с патронами, позволяющие сместить ось коренных шеек от оси вращения вала в станке так, чтобы эта ось вращения совпала с поверхностью обрабатываемой шатунной шейки. При шлифовании шатунных шеек наиболее важно обеспечить параллельность их осей относительно коленчатого вала коренных шеек. Максимально допустимой не параллельностью следует считать величину 0,1 мм на 1 м. В этом случае  длина шатунной шейки 25 мм не параллельность составит 0,0025. Не параллельность шатунных и коренных шеек определяет-с одной стороны, типом станка и его техническим состоянием с другой - квалификацией специалиста-шлифовщика. У многих коленчатых валов двигателей иностранных автопроизводителей ширина шеек мала (20-22 мм), что требует применять­ на станках достаточно узких шлифовальных кругов. При балансировании не допускается касание кругом торцевых поверхностей (щек) коленчатого вала. Надо стремиться к тому, чтобы не повредить галтели - поверхности перехода от шейки. На тех валах, где нет канавок для выхода шлифовального круга, круг должен иметь радиусы не меньше, ' галтелей. Этими требованиями пренебрегать не следует, поскольку любое повреждение галтелей может привести к  разрушению. Наибольшую точность дает шлифование в неподвижных центрах есть постоянным. Привод вала обеспечивается специальным поводком. Не все специализированные станки для шлифования коленчатых валов, имеются на отечественных ремонтных предприятиях, обеспечивающие  такие условия, поэтому для коренных шеек можно обеспечить шлифование универсальным кругло - шлифовальным станком. Сжатый центрами коленчатый вал деформируется, чем он тоньше, тем больше усилие сжатия. Усилие сжатия не должно быть большим во избежание недопустимого биения коренных шеек. Проверить или подобрать усилие можно предварительным шлифованием коренных шеек и последующей проверкой биения на призмах или в центрах без усилия прижатия.

Данный вопрос имеет очень важное значение для обеспечения необходимого качества ремонта. В практике ремонта нередки случаи, когда после "неграмотного" шлифования в центрах длинные и тонкие валы имели биение коренных шеек на призмах 0,10-0,15 мм, а по­сле аналогичного шлифования в патронах - даже до 0,4-0,5 мм. Это даже больше, чем обычно бывает после расплавле­ния подшипников, обрыва шатуна и т.д.

Альтернативным способом шлифования коренных шеек является шлифование с одним центром. При этом хвостовик вала устанавливается в неподвижный центр, а вал зажимает­ся в патроне по поверхности заднего сальника. Зажатие одной из поверхностей вала в патроне требует очень точного его выставления по минимальному биению этой поверхности (не более 0,02-0,03 мм). При этом опора с другой стороны на центр обеспечивает отсутствие деформации вала, что всегда имеет место, если обе стороны вала зажаты в патронах

Для шлифования коренных шеек необходимы различные центры, включая укороченные для коротких центровых отвер­стий. Очень большое значение имеет состояние центровых фасок на самом валу.

shlifovanie shatun sheek

Рисунок 3.3.17 - Технологическая втулка, устанавливаемая на хвостовик  для шлифования вала

После шлифования коренных шеек и торцевых (упорных) поверхностей могут быть прошлифованы, если необходимо, хвостовик (если он наварен) и поверхности под сальники. Для деформированных валов это обязательно, для недеформированных следует ориентироваться на состояние и биения соответствующих поверхностей. Обычно биение более 0,02 мм требует обработки поверхностей под сальники. Это не значит, что надо шлифовать эти поверхности до тех пор, пока не ис­чезнут все круговые риски.

После шлифования шеек вала их необходимо полировать. Поверхности шеек после шлифования не имеют, как правило, необходимого качества поверхности, а это дает повышенный износ вкладышей или втулок подшипников в процессе первоначальной приработки. Кроме того, смазочные отверстия, выходящие на поверхность шейки, после шлифования обычно имеют острые края и могут повредить мягкий материал вкладышей.

Приспособление для полировки шеек

Рисунок 3.3.18 - Приспособления для полирования (доводки) шеек валов:

а—простейшие ручные; в — с электроприводом: 1 — войлочное. 2— шейка вала; 3 — башмак; 4 — абразивное полотно; 5 — ролик; 5—кронштейн; 7 — шарнир; 8 — электродвигатель

Один из простейших вариантов такого приспособления представляет собой специ­альные щипцы с длинными ручками и узкими (шириной 20 мм) деревянными башмаками, на внутреннюю радиусную поверхность которых наклеен толстый (5-10 мм) слой войлока. Абразивное полотно смазывается маслом и зажимается щипцами между войлоком и шейкой вала, после чего вращением вала в течение нескольких минут осуществляется доводка шейки.

Для доводки валов с диаметрами шеек от 40 до 70 мм достаточно 4-5 комплектов башмаков различного радиуса, т.к. толстый слой войлока на башмаке обеспечивает хорошее прилегание к шейке в некотором диапазоне её диаметров. При доводке шеек необходимо обеспечить минимальный съем (несколько микрон). Качество доводки поверхности легко проверяется с помощью кусочка меди если провести им по хорошо отполированной шейке, то на ее поверхности не должно остаться следа.

Ремонт любого вала должен заканчиваться контролем всех размеров и биений, причем этот контроль необходимо проводить с особой тщательностью. Неполный (или недобросовестный) контроль отремонтированного вала может значительно снизить качество ремонта всего двигателя в целом. Измерения вала при окончательном контроле выполняются аналогично описанным выше операциям по его дефектации.

Высокочастотная металлизация

Высокочастотная металлизация

При этом способе плавление металла производится электрической дугой, а индукционным нагревом токами высокой частоты. На ремонтируемой поверхности детали образуется стальное покрытие достаточной прочности, крепко связанное с основным металлом детали. Это покрытие отличается высокими антифрикционными свойствами, превосходящими износостойкость неметализированного металла. Металлизационный слой из среднеуглеродистой стали после механической обработки должен иметь толщину не менее 1 мм. Нагрев проволоки с высоким к.п.д. индуктора происходит только при определенном соотношении между диаметром проволоки и частотой тока, поступающего в индикатор. При высокочастотной металлизации обычно применяют проволоку диаметром 4-5мм. При использовании индукционного нагрева происходит послойное оплавление наружной поверхности проволоки и по мере продвижения происходит полное ее расплавление. Распыление при этом способе металлизации получаются равномерным и размеры частиц составляют 80-90 мкм. Прочность покрытия при растяжении примерно в двое выше, чем при электродуговой металлизации, по своему значению приближается к прочности покрытия, получаемого при газовой металлизации. Объясняется это не значительным окислением м выгоранием химического элемента в покрытии. По сравнению с дуговым процессом углерода выгорает примерно в 4-6 раз меньше. Лучшие результаты при высокочастотной металлизации дает проволока с содержанием углерода 0,45 %. Такая проволока обеспечивает наиболее стабильный состав покрытия. Выгорание углерода, кремния, магния, не превышает 5-6 %. Твердость покрытия на 100-150 НВ выше, чем твердость покрытия, полученного из такого исходного материала электродуговой и газовой металлизацией.

ВЫБОР СПОСОБОВ УСТРАНЕНИЯ ДЕФЕКТОВ

ВЫБОР СПОСОБОВ УСТРАНЕНИЯ ДЕФЕКТОВ

1. Дефект №1 (Износ торцов нижней головки шатуна ).

1.1. Выбираем способы по конструкторско-технологическим характеристикам.

Металлизация:

МПл не подходит из-за малой толщины наращиваемого слоя металла и вида покрытия.

Способ МГП не подходит из-за дороговизны материала покрытия (бронза дорогая).

МЭД подходит по всем параметрам и показателям.

МВЧ и МИВЧ не подходит по материалу покрытия и виду восстанавливаемой поверхности.

Ручная и механизированная сварка под слоем флюса.

НРг и НРад не подходят по виду основного материала изношенной детали.

НОФпл, НСФсер, НСФтмо, НСФпг, НСФпл подходят по всем показателям.

Вибродуговая наплавка.

НВдж,  МВДсо2, НВДп, НВДвс, НВДгж, НВДпл, НВДуз, НВДтмо подходят по всем показате­лям.

Микронаплавка, наплавка в среде СО2, припекание порошков.

НЭИ, НПЭ, НБм не подходят по виду поверхности восстановления.

НУГфл, НУГлэ, ТДПП, ЭНП не подходят из-за большего минимально допустимого диаметра востанавливаемой поверхности

НУГ и НУГар подходят по всем показателям.

Хромирование.

ХРппол, ХРлег, ХРхэ не подходят так как сопряжение восстанавливаемой поверхности явля­ется подвижным.

ХР, ХРор, ХРуз, ХРстр подходят по всем показателям.

Железнение.

Использование в данном случае любого вида железнения весьма не желательно по трем при­чинам:

а) Приходится наносить 2-3 слоя, так как один не обеспечивает требуемой толщины.

б) Низкая экологичность методов железнения, требуется очистка стоков.

в) Низкая усталостная выносливость.

1.2. По показателям физико-механических свойств.

Способ наплавки ручной аргонодуговой не подходит из-за малой величины микротвердости (всего 200 кг/мм2).

Способ наплавки вибродуговой в среде пара не подходит из-за малой величины микротвердо­сти (всего 225 кг/мм2).

Способы вибронаплавки НВдж, НВДвс, НВДгж, НВДпл, НВДуз и НВДтмо не подходят из-за малого показателя долговечности.

Способ наплаки в среде углекислого газа без охлаждения не подходит из-за малой величины микротвердости (всего 230 кг/мм2).

Способ хромирования в обычном электролите не подходит из-за малой величины выносливо­сти.

1.3. По технико-экономическим показателям.

Наплавка ручная газовая не подходит для нашего массового ремонта деталей (12500 деталей в год), так как является весьма дорогим способом.

Хромирование способами ХРппол, ХРхэ, ХРуз, ХРстр не желательны к применению из-за до­роговизны.

1.4. По прочим характеристикам.

Способ металлизации МЭД не стоит применять т.к. получаемое покрытие является хрупким, что для нашего случая недопустимо.

Способ вибродуговой наплавки в среде углекислого неприемлем  из-за наличия пор, раковин, трещин и т.д.

Способ вибронаплавки порошковой проволоки не желателен к применению из-за наличия не­равномерностей в структуре покрытия.

Способ микронаплавки  в среде углекислого газа с добавлением аргона нежелателен к приме­нению из-за низкой производительности.

Способ хромирования в электролите с каталитическими добавками применяется редко и обо­рудование для него весьма дорого, поэтому его мы тоже не будем применять.

5. Выбираем способ хромированием в саморегулирующимся электролите.

2. Дефект №2 (Задиры поверхности нижней головки шатуна).

2.1. Выбираем способы по конструкторско-технологическим характеристикам.

Металлизация.

МВЧ, МПГ, МПл не подходят  по виду материалу покрытия.

Способ МИВЧ не подходит по виду восстанавливаемой поверхности.

По всем показателям подходит способ МЭД.

Ручная и механизированная сварка под слоем флюса.

Подходят способы НРад и НСФлп.

Остальные способы не подходят по виду восстанавливаемой поверхности или материалу по­крытия.

Вибродуговая наплавка.

Ни один способ не подходит из-за вида восстанавливаемой поверхности.

Микронаплавка, наплавка в среде СО2, припекание порошков.

Подходит метод НЭЧ, другие не подходят по виду поверхности восстановления (упрочнения).

Хромирование.

Также не подходит не один метод, так ка не совпадают виды поверхности восстановления (упрочнения).

Железнение.

Не подходит не один метод, так ка не совпадают виды поверхности восстановления (упрочнения).

2.2. По показателям физико-механических свойств.

Способ металлизации МЭД не подходит из-за низких показателей коэффициента выносливо­сти, сцепляемости и долговечности.

2.3. По технико-экономическим и прочим показателям.

В принципе способы ремонта сваркой НРад, НСФпл и микронаплавкой НЭИ имеют примерно одинаковую себестоимость, все же предпочтение отдадим способу электроимпульсной мик­ронаплавки, т.к. сварка НРад, является малопроизводительной, а НСФпл требует термической обработки.

В результате выбираем способ электроимпульсной наплавки.

3. Дефект №3 (Износ отверстия под втулку верхней головки шатуна) .

Данный дефект устраняется растачиаием отверстия верхней головки шатуна под следующий ремонтный размер. А при занчительном износе выбираем способ востановлнния.

Ручная и механизированная сварка под слоем флюса.

Способы НРэ, НСФпл, НСФсер, НСФтмо, НСФпг и НСФлп не подходят из-за большого мини­мально допустимого покрытия.

Способ НРад не подходит по виду материала изношенной детали.

Остается способ НРг.

Вибродуговая наплавка.

Не подходит не один из способов, из-за большого минимально допустимого диаметра восстанавливаемой поверхности.

Микронаплавка, наплавка в среде СО2, припекание порошков.

Подходят способы НУГ и НУГар.

Остальные способы не подходят из-за большего минимально допустимого диаметра поверхности восстановления.

Хромирование.

В принципе для восстановления детали подходит почти любой способ хромирования, но заглядывая вперед отметим что хромированные детали в дальнейшем трудно обработать (механически), так что применение хромирования нежелательно.

Железнение.

Способы Жвв и Жпр не подходят по виду поверхности восстановления.

Способы Жв, Жвх, Жуз, Жспл, Жмк и Жпор подходят для нашей детали.

3.2. По показателям физико-механических свойств.

Способ металлизации МЭД не подходит из за низких показателей коэффициента выносливости, сцепляемости и долговечности.

Способ сварки НРг не подходит из-за низкой долговечности.

3.3. По технико-экономическим и прочим показателям.

Выбираем из способов микронаплавки (НУГ и НУГар) и железнения самый дешевый по себестоимости ремонта. Ими оказываются микронаплавка способами НУГар и железнение методом Жспл, но при дальнейшем рассмотрении характеристик этих двух способов делаем вывод, что применения способа железнения с нанесением сплава более выгодно, значит выбираем этот способ.

ОПИСАНИЕ ТЕХНОЛОГИИ РЕМОНТА ШАТУНА

ОПИСАНИЕ ТЕХНОЛОГИИ РЕМОНТА ШАТУНА

Шатун изготовлен из стали 40Н2МА (ГОСТ 4543—71), а крышка из стали 40Х (ГОСТ 4543—71). Ниж­няя головка имеет косой разъем под углом 55°±30' к продольной оси. Шатун соединен с крышкой двумя болтами,    ввернутыми в резьбовые    отверстия    тела шатуна. Фиксация шатуна и крышки  осуществляется  по шлицам   и     фиксирующему пояску на одном из шатунных болтов. Очень важно для работы шатунных болтов и вкладышей плотное сопряжение шлицов, поэтому грязь, заусеницы и забоины на шлицах не допускаются. Шатун с крышкой составляют комплект, одна из деталей которого не мо­жет быть заменена деталью другого комплекта. Перед сборкой шатуна резьбу бол­тов смазывают графитной смазкой. Затяжку начина­ют с длинного болта тари­рованным ключом крутя­щим моментом 20—22кгс-м.

Рис 1. Шатун

На шатуне и крышке вбли­зи стыка наносятся метки  спаренности шатуна с кры­шкой.

В нижней головке шатуна имеется отверстие диаметром 93+0'021 мм под вкладыши подшипников, в верхней головке —отверстие диаметром 56+0'03 мм под бронзовую втулку. Внутрен­няя поверхность втулки оконча­тельно обработана до диаметра 50+0.040 мм после запрессовки в отверстие верхней головки шату­на, при этом колебание размера для одного шатуна должно быть не более 0,004 мм.

В процессе эксплуатации дви­гателя у шатунов могут возни­кать следующие неисправности: изгиб и скручивание, износ от­верстий в нижней головке и брон­зовой втулке.

Шатуны с указанными неис­правностями восстанавливают. Шатуны, имеющие трещины любого размера и расположения, а также отклонение торцов верх­ней и нижней головок от поло­жения в одной плоскости более чем на 1,0 мм, выбраковываются. Проверка на отсутствие трещин осуществляется на магнитном дефектоскопе в магнитном поле при силе тока 800 А.

Бронзовую втулку из верхней головки выпрессовывают при износе отверстия во втулке более 50,08 мм или при ослаблении посадки втулки.

Для ремонта устанавливают крышку на шатун и крепят бол­тами. Окончательную затяжку болтов крутящим моментом 20—22 кгс-м производят на приспособлении.

Шатун торцом нижней головки устанавливают на площадку пленки 1, головку болта крепления крышки шатуна вставляют в головку 2 приспособления и включают электродвигатель 3. В мо­мент затяжки болта с усилием 20—22 кгс-м реактивные силы под­нимают правый конец планки / с грузом 7 вверх; планка нажмет на концевой выключатель б, который выключит электродвигатель 3. Затяжку второго болта производят в том же порядке.

Погнутые шатуны с кривизной, не превышающей 1,0 мм на длине шатуна, допускается исправлять обработкой торцов верх­ней головки шатуна. Правка шатуна не допускается.

Торец верхней головки обрабатывают с двух сторон в размеры, показанные на рис. 1. Внутренний диаметр нижней головки ша­туна проверяется после контрольной затяжки шатунных  болтов моментом 20—22 кгс-м. Предельно допустимый диаметр — до 92, 98—93,05 мм, если среднее арифметическое диаметров в плос­кости стыка и сечении, перпендикулярном стыку, не выходит за пределы 93,00—93,021 мм..

Рис 2. Приспособление для расточки отверстий в головке шатуна. 1 — прижим; 2, 14 — съемные пальцы; 3 — накидная гайка; 4 — планка; 5, 15 — уста­новочные втулки; 6, 10 — съемные приставки; 7 — палец срезанный; 8, 18 — направляю­щие втулки; 9, 12 — конусные шайбы; 11 — при хват; 13 — болт; 16 — установочный па­лец;  17 — упор;  19 — корпус

Восстановление отверстия в нижней головке шатуна произво­дят осталиванием. Предварительную расточку отверстия до диа­метра 93,6 мм под осталивание и окончательную расточку до диа­метра 92,96+0'035 мм производят на алмазно-расточном станке мр-дели 2705 в специальном приспособлении (рис. 2).

Для расточки отверстия в нижней головке шатуна на корпус 19 устанавливают съемную приставку 6 установочной втулки 5 в базовое отверстие диаметром 130+0'04 мм. На приставку 6 уста­навливают шатун отверстием в верхней головке на палец 7, а тор­цом нижней головки на торец втулки 5 фиксируют отверстие нижней головки относительно оси шпинделя станка съемным пальцем 2.  Устанавливают прижимную планку 4,  крепят шатун в приспособлении накидной гайкой 3, вынимают съёмный палец 2 и растачивают отверстие. Расточку отверстия после осталивания производят за два прохода. Предварительно растачивают от­верстие до диаметра 92,4 мм резцом с пластинкой из твердого сплава Т5КЮ (частота вращения расточной головки 372 об/мин, подача головки — 0,23 мм/об). Окончательно растачивают отвер­стие до диаметра 92,96+0>034 мм резцом с пластинкой из твердого сплава Т30К4 (частота вращения расточной головки — 520 об/мир, подача —0,1 мм/об). После расточки отверстие в нижней головке шатуна хонингуют в размер 93+0'021 мм.

Кроме процесса осталивания отверстия нижней головки ша­туна, в последнее время разработан способ газопорошковой на­плавки, заключающийся в том, что самофлюсующийся порошок ПГ-ХН80СР2 (РТУ УССР 1179—67) наносится на восстанавлива­емую поверхность посредством ее подачи через пламя ацетилено-кислородной горелки специальной конструкции, использующей эффект эжекции (тип горелки ГАЛ-2-68).

Рис.3 Хонинговальная головка.

1- гидроцилиндр; 2 — опорная втулка: 3 — устано­вочный палец; 4 — планка; 5 — колодка хонинго-вальной головки; 6 — алмазные бруски; 7 — поводок; в —- чека; 9 — стержень; 10 — толкатель; 11 — кор­пус головки: 12 — разжимной конус; 13 — планка: 14 —   прижимная  втулка;   15   —   шатун;   16  —   корпус

Химический состав порошка ПГ-ХН80СР2:     углерод — 0,3—: 0,6%, кремний —  1,5—3,0%, железо — 4,5—5,0%, хром —  12— 15%, бор — 1,5—2,5%, никель — 80,2—73,9%.

Порошок выпускается Торезским заводом твердых сплавов Ми­нистерства цветной металлургии.

Перед нанесением- порошковой композиции шатун должен быть собран с нижней крышкой; болты крепления крышки шату­на затянуть моментом 20—22 кгс-м.

При наплавке поверхности отверстия в самом шатуне стер­жень, его нужно охлаждать путем погружения в воду по головку. При наплавке отверстия в крышке шатуна охлаждение не требу­ется. Толщина наплавленного слоя — 0,1 мм. Твердость наплав­ленной поверхности — HRC 35—40. Трудоемкость наплавки —  7—10 мин на один шатун.

После наплавки отверстие нижней головки шатуна хонингуют до получения номинального размера 93+0>021 мм. Хонингование отверстия в нижней головке шатуна после расточки или наплавки. производят на вертикально-хонинговальном станке модели ЗМ82-в приспособлении, показанном на рис. 3. Хонинговальную голов­ку крепят в патроне, который устанавливают в шпиндель станка. Привод механизма разжима брусков встроен в шпиндельную бабку станка. Поступательное движение от привода передается толкателю 10 и через поводок 7 разжимному конусу 12. Послед­ний, воздействуя на планки 13, разжимает колодки 5 с алмазны­ми брусками 6. Хонингуют отверстие предварительно до диамет­ра 92,99+°>021 мм алмазными брусками марки 2768-0103-Г-АСР 100/8Q-50M-73 (ГОСТ 16606—71) при удельном давлении брусков 4—6 кгс/см2 и окончательно до диаметра 93+0>021 мм алмазными брусками марки 2768-0103-1-АСМ 28/20-50М-73 (ГОСТ 16606—71) при удельном давлении брусков 3—5 кгс/см2. Хонинговальная го­ловка должна делать 88 двойных ходов в минуту при 88 об/мин шпинделя станка. Шероховатость поверхности после окончатель­ной обработки не ниже /?а = 0,63 мкм.

При ослаблении посадки или провороте бронзовой втулки от­верстие в верхней головке после выпрессовки втулки растачи­вают под ремонтный размер 56,25 мм. Расточку отверстия под ремонтную втулку и во втулке под поршневой палец производят на алмазно-расточном станке модели 2705 в приспособлении, по­казанном на рис. 70.

С корпуса 19 приспособления снимают съемную приставку, 6, а на ее место устанавливают съемную приставку 10 и крепят болтами. На приставку устанавливают шатун, базируя отверстием в нижней головке на установочный палец 16 и упор /7, фик­сируют отверстие верхней головки относительно оси шпинделя станка съемным пальцем 14, крепят шатун в приспособлении бол­том 13 и вынимают съемный палец 14. Растачивают отверстие до диаметра 56,25+0'03 мм под ремонтную втулку резцом с плас­тинкой из твердого сплава Т30К4 при 860 об/мин расточной головки и подаче 0,1 мм/об. Шероховатость поверхности после обработки Ra = = 1,25 мкм.

В расточенное отверстие запрессовывают ремонтную втулку (рис. 4), изготов­ленную из бронзы БрОЦС 5-5-5  (ГОСТ 61.3—65).

Рис.    4.    Ремонтная втулка верхнее головки шатуна

Наружный диаметр Д втулки для расточенного на ремонтный размер отвер­стия в шатуне должен быть 56,25

Бронзовую  втулку    запрес­совывают с натягом 0,05—0,12 мм заподлицо с торцом шатуна, со­вместив масляные отверстия во втулке и шатуне. Перед запрессов­кой втулку охладить до температуры минус 50°С в специальном контейнере с сухим льдом.

Рис. 5. Приспособление для контроля шатуна 2, 6 — индикатор; 3 — основание; 4 — корпус;  5 — стойка;  7 — упор; 9 — базовый палец; 10 — установочный палец; U — скоба

Расточку    отверстия    в    бронзовой    втулке    до    диаметра 50 4+0°;оз10   мм производят при частоте вращения расточной голов­ки 1600 об/мин и подаче 0,06 мм/об.

Шероховатость поверхности после расточки /?а = 0,63-7-0,32 мкм. Перед мойкой масляный канал в шатуне прочищают шом­полом. Промывают шатун в моечной машине и обдувают сжа­тым воздухом.

Изгиб, скручивание шатуна, расстояние между осями отвер­стий верхней и нижней головок проверяют на контрольном при­способлении (ряс. 73).

Настройку индикаторов, установленных ' на приспособлении, производят по эталону.

В верхнюю головку шатуна вставляют установочный палец 10, надевают шатун отверстием нижней головки на базовый палец 9 и кладут выступающими поверхностями установочного пальца 10 на упор 7.

Непараллельность осей отверстий верхней и нижней головок не должна превышать 0,04 мм на длине 100 мм.

Оси отверстий должны лежать в одной плоскости, отклоне­ние не более 0,03 мм на длине 100 мм.

Расстояние между осями должно быть 280±0,03 мм.

Контроль отверстий (диаметр 50^0^° mm и диаметр 93+0'021 мм) производят индикаторным нутромером. Шерохова­тость поверхностей в отверстиях головок — а = 0,63 мкм торцов а=1,25 мкм. Проверяют совпадение отверстий во втулке и шатуне.