Устройство современного автомобиля

Книга устройство современного автомобиля

Устройство современного автомобиля это раздел в котором вы найдете информацию о устройстве современных систем автомобиля.

Современный автомобиль постоянно модернизируется, внедряются новые изобретения. Появляются новые системы впрыска, распределения горючей смеси, устройство современных автомобилей и описание Bosch.

Устройство автомобиля нового поколениядаст нам базовые знания о автомобиле, позволит расширить кругозор автомобилиста, подымет ваш уровень как водителя, но еще даст навыки механика.

Современная автомобильная техника развивается очень быстро и нужно очень постараться, чтобы идти вслед за новыми современными технологиями. Как говорят "Программист прошлого года, без навыков работы в этом году, уже не программист". Потому, что техника и устройство современного автомобиля развивается с каждым днем.

1. Общее знакомство с современным автомобилем.

Шаг №1.Знакомство с современным автомобилем - если вы решили обзавестись автомобилем, хотите быть независимыми и не следить за расписанием вам надо задуматься о покупке автомобиля.

Шаг №2. Безопасность современного автомобиля - это одна из самых главных составляющих, которая учитывается при производстве современного автомобиля.

2.1 Ремни безопасности, как устройства системы безопасности - "пристегнутые ремни безопасности когда-то могут спасти вам жизнь".

2.2 Система безопасности транспортных средств - все современные авто производители уделяют внимание системам безопасности автомобиля, так как от этого зависит здоровье и жизнь пассажиров автомобиля.

2.3 Новые функции системы безопасности японских автомобилей - японские авто производители выбирают приоритетным направлением повышение безопасности автомобиля.

2.4 Система подушки безопасности - подушка безопасности значительно снижает риски повреждения человека пир ДТП.

Шаг №3. Классификация автотранспортных средств.

Шаг №4. Схемы автомобилей

2. Устройство современного автомобиля

Шаг №1. Устройство и ремонт автомобиля

Шаг №2. Устройство современного двигателя

2.1 Характеристики современного двигателя

2.2 Классификация двигателей

2.3 Принцип работы двигателя автомобиля

2.4 Дизельный двигатель

2.5 Карбюраторный двигатель

2.6 Инжекторный двигатель

3. Системы питания современного автомобиля.

Шаг №1. Система питания - общее устройство системы питания типичного автомобиля.

Шаг №2.Инжектор (Промывка инжектора) - что такое инжекторный двигатель, как он работает, преимущества и недостатки.

Шаг №3. Карбюратор с электронным управлением (ECOTRONIC)

Шаг №4. Системы впрыска топлива

Шаг №5. Работа системы K-Jetronic

Шаг №6. Система L-Jetronic

Шаг №7. Система MED-Motronic

Шаг №8. Cистема впрыска KE-Jetronic

Шаг №9. Cистема пуска KE-Jetronic

Шаг №10. Проверка давления топлива в системе. Проверка давления в камерах клапанов. KE-Jetronic

Tags: устройство автомобиля из чего состоит элементы автомобиля

Датчики давления в жидкостных средах

Датчики давления в жидкостных средах

На автомобилях они традиционно основаны па преобразовании перемещения упругой диафрагмы в положение переключателя или движка потенциометра. На та­ком принципе работают все датчики давления масла в ДВС прежних конструкций. Сегодня электромеханические датчики заменяются па кремниевые или керамиче­ские интегральные. Непосредственно в корпусе датчика размещают унифицирую­щие преобразователи. Имеется защита от электромагнитных помех, микросхемы ра­ботают при температуре  -40...+ 150 °С в условиях вибраций, при давлении до 500 psi (3440 кПа), в агрессивных химических средах. Из соображений стоимости корпуса датчиков изготовляются из пластмассы, устойчивой к перечисленным воздействиям.

Информация о давлении масла в коробке переключения передач используется контроллером, управляющим переключением скоростей. Требования к датчику здесь такие же, как и при измерении давления масла в двигателе.

Давление жидкости в тормозной гидравлической системе гораздо выше, чем в коробке переключения передач. Например, в ABS оно может достигать 500 psi (3440 кПа). Давление жидкости в тормозной системе автомобиля около 150 psi (1030 кПа), оно измеряется датчиками на" легковых автомобилях на этапе испыта­ний и на тяжелых грузовиках при эксплуатации. На пассажирском автомобиле до­статочно иметь один датчик давления для контроля  за гидравлической системой. Например, в системе ABS-VI фирмы GM давление оценивается по току электро­двигателей насосов.

Датчики барометрического давления

Датчики барометрического давления и абсолютного давления во впускном коллекторе

Датчики барометрического давления используются в системах управления двигателем при определе­нии массы топлива по объемному расходу воздуха. Этот способ оказывается намного проще и дешевле в реали­зации, если сравнивать с непосредственным измерением массового расхода воздуха, но точность резко снижается. Датчики барометрического давления могут использоваться только для диагностики в бортовых диа­гностических системах второго поколения OBD-II.

Датчики барометрического (атмосферного) давления нужны для адаптации электронных блоков управления к перепадам высоты и изменениям погоды. Они могут применяться совместно с расходомером воздуха по объему. Скорее всего это один и тот же датчик, тогда измерение атмосферного давления производится, когда зажигание включено, а двигатель еще не работает. При езде в горных местах иногда приходится специально останавливаться для того, чтобы перезапустить двигатель, что позволит адаптировать систему управления подачей топлива к новой высоте.

Выпускаются и сдвоенные датчики (рис). Вход барометрического датчика остается открытым и на него подается атмосферное давление, вход датчика разре­жения соединяется вакуумным шлангом с впускным коллектором.

Рис. 2.2. Комбинированный датчик барометрического давления и разрежения:

1. Вакуумный шланг;

2. Шланг в атмосферу;


 

Рис. 2.3. Современный интегральный датчик давления в защитном корпусе

Барометрические датчики и датчики давления, применяемые для измерения разрежения во впускном трубопроводе, могут быть различных конструкций. Дат­чики давления дискретного действия представляют собой устройство, где замыка­ние и размыкание контактов происходят под действием упругой мембраны, испы­тывающей измеряемое давление.

Датчики давления непрерывного действия представляют собой либо потенцио­метр, ползунок которого связан с мембраной, либо катушку индуктивности, в ко­торую мембрана под действием давления вдвигает магнитный сердечник.

Современные интегральные датчики (рис.) подключаются к микропроцессо­ру ЭБУ через коммутатор и аналого-цифровой преобразователь (АЦП). Для 8-раз­рядного контроллера шаг дискретизации может составлять до 4 мс, для 16-разряд­ного — до 2 мс.

Погрешность датчика абсолютного давления во впускном коллекторе обычно около 1%.

Датчик барометрического давления работает в диапазоне 60... 115 кПа, имеет погрешность около 1,5%. По краям рабочего диапазона, как по температуре, так и по давлению, погрешность растет.

Рис. 2.4. Упрощенная электрическая схема датчика абсолютного атмосферного давления с цепями компенсации: (А — цепь температурной компенсации, В измерительный мост, С — подстройка нуля, D — коэффициент усиления, Е термокомпенсация усилителя).

Датчики абсолютного давления в двига­телях с наддувом работают в диапазоне дав­лений 20...200 кПа.

Рассмотренные датчики имеют, как пра­вило, интегральное исполнение и крепятся к стенкам соответствующих трубопроводов.

Широкое распространение получили полупроводниковые датчики с преобразо­вателем давления на кремниевом кристал­ле, в работе которого используется пьезорезистивный эффект (рис. 2.4, 2.5). На повер­хности кристалла сформирован мостик сопротивлений, ток через которые изменя­ется под действием деформации. Затем ток усиливается и вводится температурная ком­пенсация. Эти датчики отличаются неболь­шими размерами и высокой надежностью. Интегральные датчики очень технологич­ны, их выходной сигнал унифицирован для подключения к аналоговым или импуль­сным входам микроконтроллера.

Информацию о давлении в зависимости от конструкции датчика несет величина выходного напряжения или его частота.

Характеристики датчиков абсолютного давления

Датчики давления

Датчики давления

На автомобилях сегодняшнего дня вы найдете большое количество датчиков давления (начиная от датчика давления масла до дифференциального датчика  давления воздуха, которые расположены с разных сторон кузова), и их количество, несомненно, постоянно увеличивается.

Измерение давления в различных жидкостных и газообразных текучих средах производится в основном на автомобиле в процессе разработки, производства, а также эксплуата­ции. В результате эти измерения необходимы для проведения экспериментальных исследований, что является залогом успеха в обеспечении нормальной и безопасной эксплуатации автомобиля, выдачи информации водителю, для диагностики.

В зависимости от того, какой параметр мы измеряем, применяются разные единицы измерения давления. В системе СИ это единица измерения -паскаль (Па) или килопаскаль (кПа). В независимости от метода измерения в технических и других системах определяется избыточное, абсолютное или дифференциальное давление.

В таблице 2.1 кратко приведены соотношения между различными единицами измерения давления, которые в основном используются при маркировке датчиков в автомобильной про­мышленности. Здесь psi — это фунт на квадратный дюйм, единица, которая при­меняется в англоязычных странах.

Современный серийный автомобиль имеет несколько датчиков для измерения давления, например, разрежения во впускном коллекторе, давления масла в дви­гателе и т. д.

В табл. 2.2 приведены некоторые узлы автомобиля, где имеется необходимость измерения давления с целью получения управляющих сигналов для ЭСАУ.

Водителю обычно выдается информация со следующих датчиков: давления масла в двигателе, уровня топлива, уровня масла, давления охлаждающей жидко­сти, уровня охлаждающей жидкости, уровня жидкости в омывателе, уровня жид­кости в коробке переключения передач, давления в шинах.

Датчики автомобильных электронных систем

Датчики автомобильных электронных систем

Современные системы электронного автоматического управления раз­личными всевозможными техническими объектами, а также автомобильными бортовыми устройствами, имеют почти одинаковую похожую структуру.

Принцип работы различных датчиков ЭСАУ примерно одинаковый, - преобразование информации о значениях, которые преобразовываются из неэлектрических параметров в электрический сигнал — напряжение, ток, частоту, фазу и т. д. Полученные сигналы перевоплощаются в цифровой код и поступают в специальный микроконтроллер.

Микроконтроллер на основании значений этих сигналов и в соответствии с заложенным в него программным обеспечением принимает реше­ния, управляет через исполнительные механизмы (реле, соленоиды, электродвига­тели) объектом.

Возможность совершенствования автомобильных электронных систем во мно­гом зависит от наличия надежных, точных и недорогих датчиков.

В 60-х годах автомобили были оборудованы датчиками давления масла, уровня топлива, температуры, охлаждающей жидкости. Их выходы были подключены к стрелочным или ламповым индикаторам на щитке приборов.

В 70-х годах автомобильные компании начали бороться за уменьшение ко­личества токсичных выбросов из глушителя автомобиля — потребовались до­полнительные датчики для управления силовой установкой, которые необходи­мы для обеспечения нормальной работы электронного зажигания, системы впрыска топлива, трехкомпонентного нейтрализатора, для точного задания со­отношения воздух/топливо в рабочей смеси, для минимизации токсичности выхлопных газов.

В 80-х годах начали уделять больше внимания безопасности водителя и пасса­жиров — появились антиблокировочная система торможения (ABS) и воздушные мешки безопасности.

В силовом агрегате (в ДВС) датчики используются для измерения температуры и давления большинства текучих сред (температура всасываемого воздуха, абсо­лютное давление во впускном коллекторе, давление масла, температура охлажда­ющей жидкости, давление топлива в системе впрыска).

Почти ко всем движущимся частям автомобиля подключены датчики скорости или положения (скорость автомобиля, положение дроссельной заслонки, положе­ние коленчатого вала, положение распределительного вала, положение и скорость вращения вала в коробке переключения передач, положение клапана рециркуля­ции выхлопных газов).

Другие датчики определяют уровень детонации, нагрузку двигателя, пропуски воспламенения, содержание кислорода в выхлопных газах.

Есть датчики, которые определяют положение сидений.

В системе управления климатом (в климат-контроле) используются различные датчики в кондиционере для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом.

После появления антиблокировочной системы торможения и активной подвес­ки потребовались датчики для определения скорости вращения колес, высоты ку­зова по отношению к шасси, давления в шинах.

Датчики удара и акселерометры нужны для правильного функционирования фронтальных и боковых воздушных мешков безопасности. Для переднего пасса­жирского сиденья с помощью датчиков определяют наличие пассажира, его вес. Эта информация используется для оптимального наддува мешка безопасности на переднем сиденье. Другие датчики используются для боковых и потолочных воз­душных мешков безопасности, а также специальных воздушных мешков для за­щиты шеи и головы.

На современных автомобилях антиблокировочные системы торможения заме­няются более сложными и эффективными системами управления стабильностью движения автомобиля. Возникает необходимость в новых датчиках. Разрабатыва­ются и уже имеются датчики скорости вращения автомобиля вокруг вертикальной оси, датчики для предупреждения столкновений (например радарные), датчики для определения близости других автомобилей, датчики положения рулевого ко­леса, бокового ускорения, скорости вращения каждого колеса, крутящего момента на валу двигателя и т. д. Управление тормозной системой автомобиля становится частью более общей и эффективной системы электронного управления курсовой устойчивостью и стабильностью движения.

Из сказанного ясно, что сегодня датчики устанавливаются практически во всех системах автомобиля.

На рис. 2.1, а показано наиболее рациональное расположение различных дат­чиков на автомобиле.

Датчики автомобильных электронных систем можно классифицировать по трем признакам: принципу действия, типу энергетического преобразования и ос­новному назначению.

По принципу действия датчики подразделяют на электро контактные, потенци­ометры ческие, оптические, оптоэлектронные, электромагнитные, индуктивные, магниторезистивные, магнитострикционные, фото- и пьезоэлектрические, датчи­ки на эффектах Холла, Доплера, Кармана, Зеебека, Вигоида.

В зависимости от энергетического преобразования (рис. 2.1, б) датчики (Д) бывают активными (поз. 2 на рис. 2.1, б), в которых выходной электрический сигнал (ЭС) возникает как следствие входного неэлектрического воздействия (НВ) без приложения сторонней электрической энергии за счет внутреннего физического эффекта (например фотоэффекта), и пассивными (поз. 3 на рис. 2.1, б), в которых электрический сигнал (ЭС) есть следствие модуляции внешней электрической энергии (ВЭ) управляющим неэлектрическим воздейст­вием (НВ). Например, потенциометрический датчик, показанный па рис. 2.1, б (поз. 5), является пассивным преобразователем угла поворота оси потенциомет­ра (чувствительного элемента ЧЭ) в электрический сигнал. Электрический сиг­нал (ЭС) появится на выходе потенциометра только после того, как на резистивную дорожку (П) будет подано внешнее напряжение (ВЭ). Следует отме­тить, что внутри датчика, посредством чувствительного элемента (ЧЭ), всегда имеет место внутреннее преобразование внешнего неэлектрического воздействия (НВ) в промежуточный неэлектрический сигнал (НС), что показано на рис. 2.1, б (поз. 1). Применительно к датчику угла поворота, угловое положение оси потенциометра является неэлектрическим сигналом (НС) на выходе чувствительного элемента. Этому неэлектрическому сигналу (НС) соответствует выходной электрический сигнал (ЭС) датчика, если поданное па резистивную дорожку (П) внешнее напряжение (ВЭ) постоянно (рис. 2.1, б, поз. 4). Линей­ная характеристика преобразования (рис. 2.1, б, поз. 6) может быть легко изме­нена на квадратичную, ступенчатую и любую нелинейную с заданной крутиз­ной, что достигается подбором конструктивных размеров (длины, ширины, тол­щины) резистивной дорожки.

Расположение датчиков на автомобиле

 Рис. 2.1, а. Расположение датчиков на автомобиле

1 — датчик конфигурации впускного коллектора с управляемой геометрией, 2 — датчик тахометра, 3 — датчик положения распределительного вала, 4 — датчик нагрузки двигателя, 5 — датчик положения коленчатого вала, 6 — датчик крутящего момента двигателя, 7 — датчик количества масла, 8 — датчик температуры охлаждающей жидкости, 9 — датчик скорости автомобиля,10 — датчик давления масла, 11— датчик уровня охлаждающей жидкости, 12 — радарный датчик системы торможения, 13 — датчик атмосферного давления, 14 — радарный датчик системы предотвращения столкновений, 15 — датчик скорости вращения ведущего вала коробки передач, 16 — датчик выбранной передачи в коробке передач, 17 — датчик давления топлива в рампе форсунок, 18 — датчик скорости вращения руля, 19 — датчик положения педали, 20 — датчик скорости вращения автомобиля относительно вертикальной оси, 21 — датчик противоугонной системы, 22 — датчик положения сиденья, 23 — датчик ускорения при фронтальном столкновении, 24 — датчик ускорения при боковом столкновении, 25 — датчик давления топлива в баке, 26 — датчик уровня топлива в баке, 27 — датчик высоты кузова по отношению к шасси, 28 — датчик угла поворота руля, 29 — датчик дождя или тумана, 30 — датчик температуры забортного воздуха, 31 — датчик веса пассажира, 32 — датчик кислорода, 33 — датчик наличия пассажира в сиденье, 34 — датчик положения дроссельной заслонки, 35 — датчик пропусков воспламенения, 36 — датчик положения клапана рециркуляции выхлопных газов, 37— датчик абсолютного давления в впускном коллекторе, 38 — датчик азимута, 39 — датчик скорости вращения колес, 40 — датчик давления в шинах.

Из приведенного примера ясно, что любой датчик всегда состоит, как мини­мум, из двух частей — из чувствительного элемента (ЧЭ), способного восприни­мать входное неэлектрическое воздействие (НВ), и из преобразователя (П) проме­жуточного неэлектрического сигнала (НС) от чувствительного элемента в выход­ной электрический сигнал (ЭС).

По назначению датчики классифицируются по типу управляющего неэлектри­ческого воздействия: датчики краевых положений, датчики угловых и линейных перемещений, датчики частоты вращения и числа оборотов, датчики относитель­ного или фиксированного положения, датчики механического воздействия, датчи­ки давления, датчики температуры, датчики влажности, датчики концентрации кислорода, датчик радиации и др.

► Датчики подключаются к ЭБУ или средствам индикации для передачи ин­формации о параметрах контролируемой среды. В автомобильных системах цепа и надежность имеют огромное значение и при прочих равных условиях всегда вы­бирают датчик с наименьшим числом соединителей. Если к датчику следует под­ключить 5—6 проводов (например, ЛДТ), целесообразно разместить микросхему обработки сигнала непосредственно на датчике и передавать данные контроллеру через последовательный интерфейс.

При подключении датчиков к ЭБУ следует иметь в виду, что шасси (масса) ав­томобиля не может быть использована в качестве измерительной земли. Между точкой подключения ЭБУ к массе и датчиком напряжение может падать до I В за счет токов силовых элементов по массе, что недопустимо как при штатной работе датчика, так и при его диагностике.

Подавляющее большинство датчиков из числа вышеперечисленных уже доста­точно широко используется на современных импортных и отечественных автомо­билях. Их устройство, работа и принципы диагностирования подробно описаны в [3] и [4|. Но есть и такие, которые появились относительно недавно и находятся на стадии внедрения в новейшие автомобильные системы. Описанию именно та­ких датчиков уделено наибольшее внимание в данной главе.

{jcomments on}

Тенденции развития автомобильного бортового электронного оборудования

Тенденции развития автомобильного бортового электронного оборудования

Современный автомобиль состоит из четырех основных агрегатов: двигателя внутреннего сгорания (ДВС), кузова, шасси и ходовой части. Эти агрегаты состоят из различных функциональных систем, которые обеспечивают выполнение глав­ной функции автомобиля — перевозку грузов и пассажиров. Для того чтобы пере­возки были безопасными, а для пассажиров и комфортными, чтобы агрегаты, узлы, блоки, системы работали безотказно, на автомобиле широко используются электротехнические устройства и средства электрон пой автоматики.

► В последние годы техническая оснащенность автомобилей электронной бор­товой автоматикой значительно возрастает.

Совсем недавно микропроцессорные системы зажигания, электронные систе­мы управления гидравлическими тормозами, системы впрыска бензина, бортовая сам oil и а гностика считались последними достижениями в области автомобильного аппарате  и приборостроения. Теперь их относят к классическим системам и устанавливают почти на каждый серийный автомобиль.

В наши дни на вновь разрабатываемые модели автомобилей дополнительно на­чинают устанавливать совершенно нетрадиционные бортовые автоматические си­стемы, к которым относятся: информационная система водителя с микропроцес­сорным обеспечением; спутниковая навигационно-поисковая система; радарные и ультразвуковые системы зашиты автомобиля от столкновений и угона; системы повышения безопасности и комфорта людей в салоне; система круиз-контроля; система «электронная карта»; мультиплексная электропроводка.

Параллельно проводятся поиски более эффективных компьютерных техноло­гий обработки информации в бортовых электронных системах. Разработаны и уже находят применение так называемые лингвистические функциональные преобра­зователи, работающие с нечеткими подмножествами лингвистических перемен­ных, выраженных отдельными словами или целыми предложениями на естествен­ном (английском) или искусственном (компьютерном) языке. При некотором усложнении логических и арифметических операций в микро ЭВМ это позволяет повысить точность и скорость (быстроту) обработки сигналов. Как следствие, зна­чительно усложнился интерфейс, и возникла необходимость в ведении CAN- пpoтокола в мультиплексную систему.

На базе электронных систем автоматического управления двигателем (ЭСАУ-Д) и тормозами (ЭСАУ-Т) разработана и уже применяется гироскопическая система VDC для повышения курсовой устойчивости автомобиля на дороге в сложных условиях движения. Система VDC работает по принципу запрограммированного под нештатные условия движения совместного воздействия на крутящий момент ДВС (посредством системы ASR) и на антиблокировочную систему тормозов ABS, чем исключается боковой увод (снос) автомобиля при поворотах на большой скорости или на скользкой дороге. Водителю в таком случае отводится роль активного наблюдателя, контролирующего н корректирующего поведение автомобиля.

Интенсивно ведутся научные исследования возможности применения электро­магнитных клапанов с электронным управлением в газораспределительном меха­низме (ГРМ) поршневого ДВС. Идею заменить классические механические кла­паны электромагнитными еще в 50-х гг. XX в. предложил профессор Московского автомобильно-дорожного института (МАДИ), доктор технических наук Владимир Митрофанович Архангельский. Что это дает поршневому ДВС, хорошо известно теоретически [24]. Но практическая реализация идеи оказалась исключительно трудоемкой задачей, над решением которой работают специалисты многих зару­бежных фирм и отечественные разработчики. Теоретические и эксперименталь­ные исследования уже завершены. Теперь идут разработки конструкторских вари­антов исполнения ГРМ с электромагнитными клапанами.

Наряду с усовершенствованием автомобильных бензиновых ДВС все более ак­тивизируются работы по созданию экологически чистых силовых установок для электромобилей. Полагают, что достойной заменой городскому автомобилю мо­жет стать гибридный электромобиль, электронные системы управления которым также относятся к современным новациям в области автомобилестроения.

В современных условиях глобальным требованием к новейшим автомобиль­ным электрическим и электронным системам является неукоснительное исполне­ние международных стандартов OBD-II (США) и EOBD-II (EU), которые также продолжают совершенствоваться.

► Помимо специфики выполняемых функций новейшие системы автомобиль­ной бортовой автоматики кардинально отличаются от классических, чисто элек­тронных систем широким разнообразием принципов действия входящих в них со­ставных подсистем. В зависимости от решаемой задачи в новую систему в качестве основных компонентов могут входить не только электрические и электронные узлы и блоки, по и механические, гидравлические, светооптические, ультразвуко­вые и любые прочие устройства, имеющие неэлектрическую природу функциони­рования. Их роль в реализации заданной функции управления главная, хотя все информационные процессы в системе реализуются на уровне электронных блоков управления (ЭБУ), а в новейших системах — в бортовых микропроцессорах. Такие крупные составные комплексы управления не могут относиться ни к механиче­ским, ни к электрическим, ни к электронным, ни к любым другим «чистым» по принципу действия системам. В этой связи новейшие системы автомобильной бортовой автоматики, устанавливаемые на концептуальные автомобили, получили повое название — автотронные  системы.

Автотронная система, управляя неэлектрическими процессами через неэлектрическую периферию на выходе, сама управляется от сигналов, имеющих неэлек­трическую природу, которые формируются неэлектрической входной периферией.

► Например, автотропная система VDC (управления курсовой устойчивостью движения автомобиля), функциональные взаимосвязи которой с водителем и до­рогой показаны на рис. 1.1, использует в качестве входной информации скорость движения, углы наклонения кузова, разность частот вращения колес, угол поворо­та руля, атмосферные условия, а в некоторых вариантах — давление в шинах и со­стояние дорожного покрытия.

Описание условных обозначений, принятых на рис 1.1.

1. Географические условия: извилистость дороги, спуски, подъемы, повороты, перекрестки дорог, переезды.

2. Дорожные условия: тип дорожного покрытия (гравий, бетон, асфальт); ас­фальт сухой, мокрый, обледенелый; освещение дороги; плотность транспортного потока.

3. Климатические условия: атмосферные - температура, влажность, давление; температура асфальта.

4. Техногенные условия: сцепление колес с дорогой но состоянию протекторов шин; скорость вращения колес; скорость рыскания; боковой увод автомобиля, бо­ковой увод колес, боковое ускорение.

A. Блок датчиков: угла поворота руля; угла поворота кузова автомобиля вокруг вертикальной оси (гироскоп); бокового ускорения.

B. УВР — управляющие реакции водителя, являющиеся откликом субъектив­ного мышления на дорожные условия движения; проявляются индивидуально в зависимости от физического и психического состояния человека.

C. Блок датчиков: температуры, давления, влажности в атмосфере, температу­ры асфальта (по давлению в шинах).

D. Блок колесных датчиков (ДК) ABS и вычисляемых в ЭБУ системы VDC неэлектрических входных параметров .

E. Центральный боковой компьютер (микропроцессор МП), в который интег­рированы все логические и вычислительные функции четырех автоматических си­стем управления VDC, ADS, ASR, ABS. Содержит оперативную (ОЗУ) и постоян­ную (ПЗУ) память, а также входные аналогово-цифровые (АЦП) и выходные цифроаналоговые (ЦАП) преобразователи.

F. Блок оконечных преобразователей электрических сигналов в неэлектрические воздействия:

а) ДИС/ВП — драйверы информационной системы водителя (ДИС) и визуаль­ный преобразователь (ВП) электрического сигнала в оптическое изображение;

б) ЭДД/КД — электродвигатель (ЭДД) и клапан (КД) демпфирования актив­ной подвески (системы ADS);

в) ЭДН/НД — электродвигатель (ЭДН) и нагнетатель (НД) высокого давления в системе VDC;

г) ЭДТ/ГК — электродвигатель (ЭДТ) и гидроклапаны (ГК) системы ABS;

д) ШЭД/ДР — шаговый электродвигатель (ШЭД) и дроссельная заслонка (ДР) системы ASR.

G. Блок водительских органов управления: ВИ — визуальные индикаторы (стрелочные, электронные, дисплей и пр.); РК — рулевое колесо; ПТ — педаль тормоза; ПГ —- педаль акселератора (газа).

Все это неэлектрические проявления условий движения автомобиля, которые с помощью входных неэлектрических преобразователей перерабатываются в неэ­лектрические информационные сигналы: скорость движения — в круговую часто­ту вращения колес; углы вертикального наклонения — в механические перемеще­ния инерционных элементов в гироскопическом устройстве; угол поворота руля — в движение (поворот) светомодулирующего (колирующего) диска; давле­ние в шинах — в прогиб упругой мембраны и т. д.

Полученные таким образом неэлектрические информационные сигналы по­средством входных датчиков (рис. 1.1, поз. А, С, D) преобразуются в электриче­ские сигналы: поворот кодирующего диска на руле — в цифровой электрический код; круговая частота вращения колес — в последовательность электрических им­пульсов с изменяющейся частотой следования; перемещение инерционных эле­ментов гироскопа, упругой мембраны датчика давления — в аналоговые электри­ческие сигналы, которые далее с помощью аналогово-цифровых преобразователей (АЦП) перерабатываются в цифровые электрические сигналы, пригодные для по­дачи на вход микропроцессора МП.

Микропроцессор — это центральный орган управления (мозг) автотронной си­стемы. Его главная функция заключается в преобразовании электрических инфор­мационных сигналов об условиях движения автомобиля, полученных от входной периферии, в электрические сигналы управления, несущие информацию об ин­тенсивности и последовательности неэлектрических воздействий на неэлектриче­ские органы управления. Такая информация формируется в микропроцессоре в виде кодовых последовательностей электрических импульсов, которые для непо­средственного управления неэлектрическими органами непригодны.

Для согласования энергетических уровней без нарушения информационного содержания на выходе микропроцессора реализуется обратное преобразование информационных сигналов из цифровой в аналоговую форму. Эту функцию вы­полняют цифроаналоговые преобразователи (ЦАПы), которые одновременно яв­ляются усилителями мощности аналоговых электрических сигналов.

Чтобы выполнить управляемое неэлектрическое воздействие на неэлектриче­ские органы управления, вслед за ЦАПами устанавливаются оконечные преобра­зователи электрических сигналов в механические или любые другие неэлектриче­ские воздействия. Оконечные преобразователи (блок F на рис. 1.1) являются вы­ходными исполнительными устройствами автотронной системы, но не являются ее информационным окончанием. В отличие от электронной системы автотрон­ная система включает в свой состав и неэлектрические объекты управления, кото­рые и являются оконечными потребителями информации. Применительно к рас­сматриваемой системе управления устойчивостью движения автомобиля, оконеч­ными потребителями информации являются: система подачи топлива в двигатель 4, тормозная система 2 автомобиля и информационная система водителя с визуа­льными индикаторами (ВИ) и оптическим (зрительным) каналом управления (ОКУ). Эти три системы представляют собой выходную исполнительную перифе­рию автотронной системы, которая (периферия) под автоматическим управлени­ем микропроцессора, при крайне ограниченном (посредством коррекции положе­ния руля) участии водителя, обеспечивает наиболее оптимальный режим движе­ния автомобиля в сложных дорожных условиях или в аварийной ситуации (более подробно система VDC описана в главе 8).

► Другой пример — автотронное управление насос-форсунками, которые ис­пользуются в системах впрыска бензина под большим давлением непосредственно в камеру сгорания для реализации внутреннего смесеобразования. Начиная с 2000 года такие форсунки стали устанавливаться в двигателях экспериментальных легковых автомобилей фирмы TOYOTA (Япония).

Насос-форсунка (рис. 1.2), являясь гидромеханическим устройством, приво­дится в действие от кулачка 10 распределительного вала ДВС, а управляется от электронной системы S автотронного управления впрыском (ЭСАУ-В) посредст­вом быстродействующего электрогидравлического клапана 2.

Насос-форсунка является ярким примером составного компонента автотрон­ной системы. Входными неэлектрическими сигналами здесь служат: частота вра­щения и угловое положение распределительного вала; абсолютное давление (раз­режение) во впускном коллекторе; температура двигателя и положение водитель­ской педали газа. Эти неэлектрические величины с помощью соответствующих датчиков и АЦП преобразуются в числоимульсную последовательность электри­ческих сигналов и подаются на вход микропроцессора ЭСАУ-В. В микропроцес­соре путем математической обработки входных сигналов происходит формирова­ние последовательности управляющих импульсов для электрогидравлического клапана насос-форсунки.

В данном случае ЦАП на выходе микропроцессора не применяется, но управ­ляющие импульсы усиливаются в усилителе мощности и подаются на обмотку электромагнита гидроклапана 2. Гидроклапан представляет собой выходное ис­полнительное устройство автотронной системы. Однако объектом управления яв­ляется не гидрокланан, а точно отмеренная по массе и распределенная по време­ни струя 21 распыленного бензина, поступающая в объем цилиндра через диско­вый запорный клапан 17 форсунки. Управление струей позволяет получить так называемый послойный впрыск бензина, суть которого состоит в строго дозированной подаче топлива отдельными порциями и в строго определенное время. При этом за один цикл впрыска бензин подается не сплошной однородной струей, как в обычной форсунке с электронным управлением, а несколькими час­тями, каждая из которых образует «свой» коэффициент избытка воздуха р. В объе­ме цилиндра образуется послойная структура ТВ-смеси с разной концентрацией компонентов. Преимущество прямого послойного впрыска бензина состоит в том, что в первый момент воспламенения в зоне центрального электрода 19 свечи за­жигания 18 имеет место стехиометрическая (нормальная) ТВ-смесь с коэффици­ентом (3=1), которая легко возгорается. Далее процесс горения бензина при зна­чительном избытке кислорода (р = 2,0) поддерживается за счет «открытого огня», образовавшегося в первый момент воспламенения. Такой процесс сгорания ТВ-смеси позволяет получить значительную экономию бензина (до 35%), понизить выброс в атмосферу угарного газа СО и углеводородов СН, а также увеличить уде­льную мощность двигателя.

1 — фрагмент блока цилиндров в зоне камеры сгорания; 2 — магнитоэлектрический гидроклапан в сливном канале; 3 — главная бензомагистраль; 4 — подающая бензомагистраль; 5 — сливной канал (обратная бензомагистраль); 6 — корпус насос-форсунки; 7 — возвратная пружина плунжера; 8 — опорная тарелочка пружины плунжера; 9 — толкатель плунжера; 10 — кулачок распредвала; 11— запорное кольцо опорной тарелочки; 12 — поршень плунжерного насоса; 13 — рабочая полость насос-форсунки; 14 — гидромеханическая форсунка закрытого типа высокого давления (100—150 бар);

15 — перепускной канал из полости плунжерного насоса в полость форсунки; 16 — возвратная пружина запорного клапана форсунки; 17 — дисковый запорный клапан форсунки; 18 — свеча зажигания (СЗ); 19 — центральный электрод СЗ; 20 — боковой электрод; 21 — конус (струя) распыленного бензина; L — ход плунжера.

► Из приведенных примеров очевидно, что автотронная система является со­вокупностью самых различных по принципу действия устройств, объединенных в единый комплекс с целью выполнения требуемой специфической функции управления, регулирования или текущего контроля на борту автомобиля. Совре­менные подходы автомобилестроителей к комплексному решению задач автома­тического контроля, управления и регулирования приводят к тому, что подав­ляющее большинство новейших автомобильных систем бортовой автоматики являются автотронными, входными воздействиями для которых являются неэлек­трические проявления режима работы, условий движения, дорожных ситуаций и других факторов, а выходными потребителями информации (объектами управле­ния) — неэлектрические узлы, блоки, устройства, газообразные и жидкостные среды, имеющие место на автомобиле, и сам водитель. Это принципиальные от­личия автотронных систем от чисто электронных и электрических.

► Говоря о тенденциях и перспективах развития автомобильных бортовых устройств, следует отметить, что традиционно наиболее интенсивно совершен­ствуются узлы, агрегаты и схемы классического электрооборудования. Уже ско­ро в бортсеть автомобиля будет внедрено второе рабочее напряжение 42 вольта. Это связано с необходимостью повышения напряжения электропитания для новейших энергоемких потребителей, таких как силовые электромагнитные гидроклапаны, электромагнитные соленоиды силовых исполнительных уст­ройств, мощные электродвигатели, силовые электронные коммутаторы, мульти­плексная электропроводка и т. п. Ясно, что при повышении напряжения элек­тропитания соответственно уменьшаются токи в цепях потребителей, что приводит к более надежной и экономичной их работе. Но сразу переводить все электропотребители на новое напряжение, как это было сделано при переходе с 6 на 12 вольт, в настоящее время нерационально. Причина тому — выпуск 12-вольтовых потребителей огромными сериями, технологическая оснащенность производства и, главное, все эксплуатируемые в настоящее время автомобили оборудованы 12-вольтовьши потребителями (электролампы, электродвигатели, электронное и микрокомпьютерное оснащение, аудио-, радио-, видеоаппарату­ра, бортовая самодиагностика и т. п.).

Единой стратегии перевода бортсети автомобиля на более высокое напряжение пока нет. Полагают, что некоторое время на автомобиле будет два напряжения: 12 вольт — для классического электрооборудования, и 42 вольта — для новейших мощных потребителей. Такой подход широко используется па многотонных гру­зовых автомобилях, где мощные электропотребители 24-вольтовые, а освеще­ние — от 12 вольт. Еще более яркий пример — электромобили. Здесь главная тя­говая аккумуляторная батарея, управляющий контроллер и тяговый электродвига­тель рассчитаны па напряжение 120...380 В и соединены между собой отдельными цепями. При этом бортсеть остается 12-вольтовой.

Из приведенных примеров ясно, что функциональное многообразие бортовых электрических устройств неизбежно приводит к необходимости применения на автомобиле нескольких первичных источников электроэнергии с различными ра­бочими напряжениями. При этом не исключено, что будет использоваться и пере­менное синусоидальное напряжение для специальных потребителей.

► Под новые напряжения в первую очередь будут модернизированы бортовые электромашины. Уже в наши дни значительно видоизменен электростартер. В нем не применяется последовательное возбуждение, которое заменено возбуждением от постоянных магнитов. Жесткая механическая характеристика электродвигателя +12В стартера согласовывается с пусковым моментом ДВС посредством плане­тарного редуктора (редуктора Джемса). Давно нет коллекторных генераторов по­стоянного тока, их заменили многофазные синусоидальные генераторы с полу­проводниковыми выпрямителями и электронными регуляторами напряжения. Но и такие генераторы могут значительно видоизмениться при появлении второго ра­бочего напряжения или если необходимость в высоковольтном переменном на­пряжении станет реальной.

Ведутся также разработки по созданию универсальной электрической машины, так называемого «стартер-генератора», которая сможет выполнять две функции: запуск ДВС и подачу электроэнергии в бортсеть после запуска ДВС.

► Современная микропроцессорная система зажигания с низкоуровневым многоканальным распределением энергии по свечам [2] является наиболее совер­шенным решением проблемы принудительного электроискрового воспламенения ТВ-смеси в цилиндрах поршневого ДВС. Но и это не предел достижений. Уже ис­пытаны лазерные свечи зажигания, которые работают непосредственно от электронной схе­мы управления без промежуточного энергона­копителя. Это позволит значительно повысить надежность и КПД системы зажигания, а так­же избавить ее от высокочастотных электроис­кровых помех на другие узлы и блоки бортовой электронной автоматики. Электронной схемой управления может стать магнитный модулятор сжатия, работающий на ферромагнитных сер­дечниках насыщения. Схема такого модулятора показана на рис. 1.3, основным элементом в которой является высоковольтный трансфор­матор с насыщающимися сердечниками.

Если магнитопровод трансформатора ввести в режим насыщения, то его коэф­фициент трансформации резко падает и энергия из первичной обмотки во вто­ричную не трансформируется.

Выходной трансформатор имеет два изолированных друг от друга магнитопровода — М, и М2, охваченных общей первичной обмоткой W,. Каждый магнитопровод оснащен отдельной обмоткой управления (WB' и WB") и отдельной двухвыводной вторичной обмоткой (W2' и W2")

Когда по управляющей обмотке W,,' протекает ток, достаточный для насыще­ния сердечника М,, а обмотка WB" обесточена, то высокое напряжение будет на­водиться только во вторичной обмотке W2". Если обесточить управляющую об­мотку WEJ' и пропустить ток насыщения по обмотке WB", то насытится сердечник М и высокое напряжение будет трансформировано только в обмотку W2.

Система зажигания с трансформатором насыщения обладает высокой надеж­ностью, малыми габаритами и весом.

В заключение следует отметить, что не все известные разработки бортовых си­стем вышли из стадии экспериментальных исследований. Они используются в основном на фирменных моделях спортивных и концептуальных автомобилей. Но, как и прежде, почти все новации, испытанные на концепткарах, рано или поздно начинают применяться на серийных автомобилях.

Таковы тенденции развития автомобильной техники и, в частности, систем бортового электрического, электронного и автотронного оборудования.

Рис. 1.3. Магнитный модулятор системы зажигания

{jcomments on}