Устройство трансмиссии

Трансмиссия автомобиля предназначена для передачи крутящего момента от двигателя к ведущим колесам, обладает возможностью изменения величины и направления крутящего момента и его перераспределения.

Устройство трансмиссииСуществует несколько типов трансмиссий таких как:

1. Механическая трансмиссия;

2. Электрическая трансмиссия;

3. Комбинированная трансмиссия.

На современных автомобилях чаще других используется механическая (автоматическая) трансмиссия.

Автомобили подразделяются в зависимости от типа привода на:

1. Полноприводные (ведущие все 4 колеса);

2. Переднеприводные(ведущие только передние колеса);

3. Заднеприводные (ведущие только задние колеса).

Трансмиссия современного автомобиля состоит из следующих основных элементов:

Устройство сцепленияСцепление служит для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения вновь, во время переключения передач, а также предохранения элементов трансмиссии от нагрузок. Работа сцепления основана на действии силы трения. Существует много различных типов сцеплений, но популярность получили сцепления с одним или несколькими фрикционными дисками плотно сжатыми друг с другом и с маховиком. 
Устройство коробки передачКоробка передач служит для изменения крутящего момента, скорости и направления движения автомобиля, а также длительного разъединения двигателя от трансмиссии  при включении нейтральной передачи. Коробки передач бывают механические и автоматические. Автоматическая коробка передач лучше механической потому что...

Устройство карданной передачиКарданная передача служит для передачи крутящего момента от вторичного вала коробки передач на солнечную шестерню вала главной передачи. Карданная передача представляет собой механизм, который передает крутящий момент между валами, пересекающимися в центре карданной передачи и имеющими способность взаимного углового перемещения.

Устройство главной передачиГлавная передача увеличивает крутящий момент и передает его через полуоси к ведущим колесам. Главная передача это зубчатый механизм автомобиля, который служит для увеличения крутящего момента и передачи его к ведущим колёсам под углом 90 градусов.

Устройство дифференциалаДифференциал распределяет крутящий момент между ведущими колесами и обеспечивает вращение колес с разными угловыми скоростями (при повороте автомобиля). Дифференциал это механическое устройство, которое делает момент входного вала между выходными валами. Дифференциал используется в конструкции привода автомобиля.

Устройство раздаточной коробкиРаздаточная коробка предназначена для распределения крутящего момента между несколькими ведущими мостами полноприводных автомобилей. Раздаточная коробка в полноприводных автомобилязх отвечает за...

Для изучения основных элементов автомобиля жмите устройство автомобиля.

Пятиступенчатая коробка передач

Пятиступенчатая коробка передач

Устройство пятиступенчатой коробка передач


Пятиступенчатая коробка передач автомобиля ЗИЛ-4314.10:

1— ведущий вал; 2, 13, 18, 31, 33, 52 — подшипники; 3, 17, 19, 32 — стопорные кольца; 4 и 30 — зубчатые колеса постоянного зацепления ведущего и промежуточного валов; 5 — синхронизатор четвертой и пятой передач; 6 — втулка зубчатого колеса четвертой передачи; 7 и 27 — зубчатые колеса четвертой передачи; 8 ч 25 — зубчатые колеса третьей передачи; 9 — синхронизатор второй и третьей передач; 10 ч 22— зубчатые колеса второй передачи; 11 — вилка переключения первой передачи и передачи заднего хода; 12 — зубчатое колесо первой передачи и передачи заднего хода; 14 — кронштейн тормозного механизма; 15 — фланец карданного шарнира; 16 ч 34 — манжеты; 20— ведомый вал; 21 — ведущее зубчатое колесо первой передачи; 23, 26 ч 28— стопорные шайбы; 24— зубчатое колесо передачи заднего хода промежуточного вала; 29 — промежуточный вал; 35 — шарик фиксатора; 36 — пружина фиксатора; 37 — штифт замка стержней переключения передач; 38 — шарик замка; 39 — пробка контрольно-заливочного отверстия; 40 — крышка люка отбора мощности; 41 — зубчатое колесо привода спидометра; 42 — сливная пробка с магнитом; 43 — сапун; 44 — предохранитель включения первой передачи и передачи заднего хода; 45 — ось промежуточного рычага; 46 — фиксатор; 47 — рычаг переключения передач; 48 — промежуточный рычаг; 49 — ползун переключения первой передачи и передачи заднего хода; 50 — ползун переключения четвертой и пятой передач; 51 — ползун переключения второй и третьей передач; 53 — распорная втулка; 54 — блок зубчатых колес передачи заднего хода; 55 — установочная втулка.

Строение коробки передач

Строение коробки передач

 Устройство трансмисии автомобиля

Устройство трансмиссии

Устройство трансмиссии современного автомобиля,

сцепление, коробка передач, карданная передача,

главная передача, дифференциал, полуоси.

Коробка передач автомобиля предназначена для изменения силы тяги на ведущих колесах, скорости движения, изменения направления движения автомобиля. Кроме того, коробка передач позволяет на длительное время отсоединять двигатель от трансмиссии при работе двигателя на остановившемся автомобиле или при движении накатом.

Требования, предъявляемые к коробке передач автомобиля:

• обеспечение высоких тягово-скоростных и топливно-экономических качеств автомобиля;

• легкость и удобство управления;

• высокий КПД;

• низкий уровень шума при работе;

• надежность;

• малые габаритные размеры.

Бесступенчатые коробки передач 

Бесступенчатые коробки передач

Бесступенчатая коробка передач

состоит из: механизма включения, ...


В зависимости от характера изменения передаточного числа различают коробки передач ступенчатые, бесступенчатое и комбинированные. По характеру связи между ведущим и ведомым валами коробки передач делятся на механические, гидравлические, электрические и комбинированные. По способу управления — на автоматические и не автоматические. Ступенчатые коробки передач различают по числу передач переднего хода, по числу валов — на двух- и трехвальные.
В основном на автомобилях применяют ступенчатые коробки передач — двух- или трехвальные. Переключение передач осуществляется передвижением зубчатых колес или передвижением муфт синхронизаторов.

электронная система управления коробкой передачавтоматическая коробка передач


На автомобилях с классической компоновкой обычно применяют трехвальные коробки передач. Особенностью таких автомобилей является то, что почти всегда можно выделить передачу, на которой они проходят большую часть пути. Поэтому основным преимуществом трехвальных коробок передач является наличие в них так называемой «прямой» передачи, которая получается при непосредственном соединении ведущего и ведомого валов. Другим преимуществом трехвальных коробок передач является относительная

 Устройство вариатора автомобиля

Конструкция вариатора

Конструкция вариатора имеет ряд своих преимуществ

легкость получения большого передаточного числа на низшей (первой) передаче при малом межосевом расстоянии. Это объясняется тем, что передаточное число всех передач, кроме «прямой», у таких коробок передач образуется двумя последовательно работающими парами зубчатых колес, в отличие от одной пары в двухвальных коробках передач.

механизм управления кпсинхронизаторы


Двухвальные коробки передач автомобиля проще по конструкции, дешевле и имеют более высокий КПД (только на «прямой» передаче трехвальная коробка передач имеет более высокий КПД, чем двухвальная). Преимуществом двухвальных коробок передач является простота вывода крутящего момента на любую сторону (переднюю или заднюю или обе сразу), что в некоторых случаях, например при заднемоторных, переднеприводных и полноприводных конструкциях автомобилей, предоставляет большие компоновочные возможности.

 

 

Коробка передач автомобиляУстройство четырех ступенчатой коробки передач автомобиля:

1 — подшипник выключения сцепления; 2 — направляющая втулка муфты подшипника выключения сцепления; 3 — ведущее зубчатое колесо привода спидометра; 4 — картер сцепления; 5 — полуосевое зубчатое колесо; 6 — сателлит; 7 — ось сателлитов; 8 — коробка дифференциала; 9 — регулировочная прокладка; 10, 12— синхронизаторы; 11 — упорные полукольца; 13 — игольчатый подшипник зубчатого колеса; 14 — вторичный вал; 15 — задняя крышка картера коробки передач; 16 — картер коробки передач; 17— первичный вал.

Многоступенчатые коробки передач

Коробка передач КАМАЗ

Устройство и работа многоступенчатой

коробки передач КАМАЗ

Коробка передач МАЗ

Коробка передач автомобиля МАЗ

Устройство коробки передач автомобиля МАЗ

 

Неисправности коробки передач автомобиля

Неисправности коробки передач автомобиля

Основные признаки и причины

неисправностей коробки передач автомобиля

Пневмогидроусилителя

Пневмогидроусилителя

 Гидравлический привод сцепления

автомобилей марки «КамАЗ»

Гидравлический привод сцепления

Для обеспечения управления сцеплением и

повышения плавности его включения

применяют гидравлический привод.

Устройство гидравлического привода КАМАЗ

Пневмогидроусилителя привода сцепления служителя уменьшения усилия, прикладываемого к педали сцепления водителем. Он состоит из гидравлического цилиндра с поршнем, штоком и пружиной; пневматического цилиндра с поршнем, штоком (общий с поршнем гидроцилиндра) и возвратной пружиной; следящего механизма, состоящего из следящего поршня с манжетой, диафрагмы (зажата между двумя частями корпуса), в центре которой крепится седло выпускного клапана, возвратной пружины диафрагмы; выпускного и впускного клапанов (крепятся на одном штоке) с возвратной пружиной; седла впускного клапана; отверстия, закрытого уплотнителем от попадания грязи, соединяющего над-поршневую полость пневмоцилиндра с окружающей средой.

При включенном сцеплении общий шток прижат к поршням гидроцилиндра и пневмоцилиндра. Поршень следящего механизма занимает положение, соответствующее открытому выпускному клапану, соединяющему надпоршневое пространство пневмоцилиндра с окружающей средой и закрытому впускному клапану.
При выключении сцепления рабочая жидкость из главного цилиндра поступает в гидроцилиндр пневмогидроусилителя, и одновременно по каналу к поршню следящего механизма. Давление жидкости перемещает поршень в сторону седла выпускного клапана. Диафрагма, прогибаясь, перемещает седло к выпускному клапану, который садится в седло, изолируя надпоршневое пространство пневмоцилиндра от окружающей среды. Далее усилие от выпускного клапана через шток передается на впускной клапан, который открывается, и сжатый воздух по каналу поступает в надпоршневое пространство пневмоцилиндра. Поршень пневмоцилиндра, перемещаясь, воздействует на шток поршня гидроцилиндра. Поршень передает усилие на толкатель, который воздействует на рычаг вилки выключения сцепления. Часть сжатого воздуха поступает в полость диафрагмы. Таким образом, следящий поршень находится под действием двух противоположно направленных сил: действие рабочей жидкости с одной стороны и сжатого воздуха с другой. Поршни следящего механизма и пневмоцилиндра подобраны так, чтобы обеспечить необходимое снижение усилия на педаль сцепления.
При отпускании педали сцепления давление рабочей жидкости падает, и все детали под действием возвратных пружин возвращаются в исходное положение, надпоршневое пространство пневмоцилиндра через открытый выпускной клапан сообщается с окружающей средой.
При выходе из строя пневмосистемы перемещение поршня гидроцилиндра осуществляется только под давлением рабочей жидкости.

Гаситель крутильных колебаний

Гаситель крутильных колебаний

Гаситель крутильных колебаний

еще называют демпфером

Пневмогидроусилитель привода сцепления

Пневмогидроусилитель привода сцепления автомобилей марки «КамАЗ»: 1 — сферическая гайка; 2 — толкатель поршня выключения сцепления; 3 — защитный чехол; 4 — корпус комбинированного уплотнения; 5— манжета следящего поршня; 6— следящий поршень; 7— корпус следящего поршня; 8 — перепускной клапан; 9 — уплотнитель выпускного отверстия; 10 w крышки; 11—мембрана следящего устройства; 12 — седло выпускного клапана; 13 — уплотнитсльное кольцо; 14 — пружина мембраны; 15 — пружина впускного и выпускного клапанов; 16 — седло впускного клапана; 17 — впускной клапан; 19— выпускной клапан; 20 — тарелка пружины; 21 — пневматический поршень; 22 — пробка; 23 — манжета поршня; 24 — передний корпус; 25 — возвратная пружина пневматического поршня; 26 — толкатель поршня выключения сцепления; 27 — манжета уплотнителя; 28 и 30 — втулки; 29— пружина поршня выключения сцепления; 31 — манжета поршня; 32— гидравлический поршень выключения сцепления; 33 — задний корпус.

Гидравлический привод сцепления

Гидравлический привод сцепления

Гидравлический привод сцепления. Для обеспечения управления сцеплением и повышения плавности его включения применяют гидравлический привод. Гидравлический привод сцепления автомобилей марки «КамАЗ» состоит из педали сцепления, главного цилиндра, пневмогидроусилителя (ПГУ), системы трубопроводов и шлангов. При включенном сцеплении между штоком поршня и поршнем главного цилиндра имеется зазор, и жидкость через отверстие в поршне свободно перетекает из верхней полости в рабочую полость главного цилиндра. При нажатии на педаль сцепления усилие через шток передается на поршень главного цилиндра, который, сжимая пружину, вытесняет жидкость через отверстие в пробке и соединительный трубопровод в корпус пневмогидроусилителя. При отпускании педали под действием давления жидкости в системе и возвратной пружины поршень возвращается в исходное положение, толкатель отрывается от поршня, открывая отверстие, и полости соединяются между собой.

 

Гидравлический привод сцепления

 

Гидравлический привод сцепления автомобилей марки «КамАЗ»:

1 — кронштейн педали; 2 — рычаг толкателя поршня; 3 — оттяжная пружина; 4 — педаль сцепления; 5 — главный цилиндр; 6 — ограничитель хода пед&чи; 7 — защитный чехол; 8 — толкатель поршня; 9 — поршень; 10 — манжета поршня; 11 — корпус; 72 — пружина; 13 — уплотнительное кольцо; 14— пробка; 15 — трубка подвода воздуха; 16 — рычаг выключения сцепления; 17 — сферическая гайка; 18 — контргайка; 19 — толкатель поршня пневмогидроусилителя; 20 — возвратная пружина; 21 — пневмогидроусилитель

Гаситель крутильных колебаний

Гаситель крутильных колебаний

Гаситель колебаний (демпфер) вводят в конструкцию сцепления для предохранения трансмиссии автомобиля от резонансных крутильных колебаний, возникающих при совпадении одной из частот собственных колебаний трансмиссии с частотой действия возмущающей силы, вызываемой пульсацией крутящего момента двигателя.

 

Гаситель крутильных колебаний

 

 

Гаситель крутильных колебаний (а) и его нерабочее (б) и рабочее {в) положения:

1 и 9 — накладки диска; 2 — пластинчатая пружина; 3 — ведомый диск; 4 — фрикционные шайбы; 5 — ступица ведомого диска; 6 — регулировочная шайба; 7 — пружина; 8 —пластина гасителя.

Для предотвращения передачи угловых колебаний от двигателя на валы трансмиссии в конструкции сцепления предусмотрен гаситель крутильных колебаний (демпфер)Пружины демпфера обеспечивают упругую связь ведомого диска сцепления с его ступицей.

При отсутствии передачи крутящего момента вырезы фланца ступицы и ведомого диска, в которых расположены демпферные цилиндрические пружины, совпадают. Передача крутящего момента от ведомого диска к его ступице осуществляется через демпферные пружины. При этом ведомый диск поворачивается на некоторый угол относительно фланца ступицы и между ними возникает трение. Таким образом, энергия крутильных колебаний превращается в тепловую. Предельное угловое смещение дисков ограничено размером вырезов во фланце ступицы.

Гаситель колебаний (демпфер) вводят в конструкцию сцепления для предохранения трансмиссии автомобиля от резонансных крутильных колебаний, возникающих при совпадении одной из частот собственных колебаний трансмиссии с частотой действия возмущающей силы, вызываемой пульсацией крутящего момента двигателя.

Упругий элемент гасителя служит для снижения жесткости трансмиссии. При этом уменьшаются частоты собственных колебаний трансмиссии и устраняется возможность появления высокочастотного резонанса. Поскольку минимальную жесткость упругого элемента гасителя  приходится ограничивать из конструктивных соображений, трансмиссия автомобиля не может быть предохранена от резонанса на низких частотах. Поэтому помимо упругого элемента, в конструкцию гасителя приходится  вводить поглотитель энергии низкочастотных резонансных колебаний обычно при помощи трения.

Как устроено сцепление автомобиля?

Как устроено сцепление автомобиля

Устройство сцепления современного

автомобиля

На рисунке показаны наиболее распространенные схемы гасителей. Упругим элементом служат пружины 3, тангенциально расположенные и вставленные в окна, прорезанные в ведущих дисках 1 и 2 и во фланце ведомой ступицы 4. На диске 1 закреплен ведомый диск сцепления; диски 1 и 2 соединены между собой заклепками 6. Прокладки 5 (а), изготовленные из стали или фрикционного материала, по толщине и количеству подбирают так, чтобы обеспечить необходимый момент трения между ведущим и ведомым элементами гасителя для поглощения энергии колебаний при резонансе.

В сцеплениях грузовых автомобилей обычно вместо прокладок 5 устанавливают пружинные кольца 7 (б), которые при стягивании заклепками создают осевую силу, необходимую для получения определенного момента трения. В данном случае при сборке гасителя не требуется такая точная регулировка момента трения, как в первом варианте.

Конструкционные схемы гасителей в трансмиссии автомобиля.

Для более эффективного гашения колебаний иногда гасители конструируют с переменной жесткостью: сначала жесткость меньше, а затем она увеличивается. Такое изменение начальной жесткости достигается тем, что сначала в работу вступает лишь часть пружин 3, а затем уже все остальные. Для этого длину окон во фланце ступицы и в ведомых дисках, в которые вставлены пружины 3, делают меньше, чем у остальных окон. Предельный момент Мmax, скручивающий гаситель до упоров и ограничивающий его минимальную жесткость, выбирают обычно равным моменту, определяемому сцепным весом автомобиля при коэффициенте сцепления 0,8, то есть:

Приспособления, обеспечивающие чистоту выключения сцепления.

Предохранение трансмиссии автомобиля от инерционных нагрузок обеспечивается правильным выбором коэффициента запаса сцепления. Дальнейшего снижения инерционных нагрузок, передаваемых от двигателя на трансмиссию, можно добиться, ограничивая резкость включения сцепления или введением гидродинамической муфты. Гаситель (демпфер) при небольшом числе оборотов коленчатого вала двигателя снижает инерционный момент, передаваемый от двигателя на трансмиссию, на 10-15%. При числе оборотов свыше 2500 в минуту инерционный момент уменьшается при наличии гасителя лишь на 5-6%.

Полное отключение двигателя от трансмиссии достигается наличием зазора между дисками сцепления в выключенном состоянии. В однодисковых сцеплениях при отсутствии рычажков выключения, принудительно отводящих нажимной диск, для этой цели применяют слабую пружину 2, оттягивающую нажимной диск 1 от ведомого при выключенном сцеплении (а). В двухдисковых сцеплениях средний ведущий диск 4 в момент выключения сцепления отталкивается от маховика слабой витой или пластинчатой пружиной 3 (б) и упирается в болт 5, ввернуты в корпус 6 сцепления.